帳號:guest(18.116.19.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂明真
作者(外文):Lu, Ming-Chen
論文名稱(中文):逆向式脈衝磁致動超音波成像系統開發
論文名稱(外文):Development of a Backward Mode Pulsed Magnetomotive Ultrasound Imaging System
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):沈哲州
葉秩光
王昱欣
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061584
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:43
中文關鍵詞:磁致動超音波磁奈米粒子超順磁奈米粒子分子影像超音波影像
外文關鍵詞:magnetomotive ultrasoundmagnetic nanoparticlessuperparamagnetic iron oxide nanoparticlesmolecular imagingultrasound imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磁致動超音波為一種在活體上觀察磁奈米粒子分布的的超音波影像技術,目前已證明它可以應用於磁奈米藥物監控、血管外超音波分子影像以及前哨淋巴結偵測的可能性。現今,磁致動超音波主要實現於前向模式,其中待掃描對象必須放置於超音波探頭與電磁鐵之間,這樣的模式並不適合臨床轉譯。為了加速磁致動超音波的臨床轉譯,我們提出了具手持式磁致動超音波探頭的逆向式脈衝磁致動超音波,該探頭結合了陣列探頭與電磁鐵,並帶有隔振能力。實驗驗證了所建立之逆向式脈衝磁致動超音波偵測埋於明膠仿體內超順磁奈米粒子分布的能力。從超快平面波成像(上至2500赫茲)並由相位差估計法得到的位移圖可以定位被外加磁場激發的超順磁奈米粒子。並使用匹配濾波搭配投影窗來增強影像對比度。我們提出的磁致動超音波成像系統基於量測得到的穿透深度、實際追蹤下限以及峰值訊號雜訊比,可知進行活體研究的可能性,以及此系統更利於臨床轉譯。
Magnetomotive ultrasound (MMUS) which enables the in vivo visualization of magnetic nanoparticle distribution using ulrasound, has shown its potential in monitoring of magnetic nano-drug delivery, extravascular ultrasound molecular imaging, and sentinel lymph node identification. To date, MMUS is mainly implemented in forward mode where the imaging object has to lie in between an ultrasound transducer and an electromagnet, which is not clinically translatable. To facilitate clinical translation of MMUS, we propose a backward mode pulsed MMUS system which features a handheld MMUS probe integrating an array transducer and an electromagnet and owning the ability to isolate vibration from the working electromagnet. The capability of the proposed backward mode pulsed MMUS system in identifying superparamagnetic iron oxide nanoparticles (SPIONs) embedded in gelatin phantoms was investigated. Displacement maps obtained from ultrafast plane-wave imaging (up to 2.5 kHz) and a phase-difference estimator are able to localize the SPIONs which were induced by a cyclic pulsed magnetic field. Matched filtering with projection window for enhancing image contrast was also performed. The penetration depth, the practical tracking lower bound and peak signal-to-noise ratio of the proposed MMUS imaging system have shown the potential in further study on in vivo testing. Overall, we demonstrated the capability of the proposed backward mode pulsed MMUS imaging system, which is more clinically translatable.
摘要 I
ABSTRACT II
Table of Contents III
List of Figures V
List of Tables VII
Chapter 1 Introduction 1
1.1 Conventional ultrasound 1
1.2 Magnetomotive ultrasound 2
1.3 Application of magnetomotive ultrasound 3
1.3.1 Magnetic nano-drug delivery monitoring 3
1.3.2 Sentinel lymph node identification 5
1.4 Magnetic force on superparamagnetic iron oxide nanoparticles 6
1.5 Motivation 8
Chapter 2 Materials and Methods 8
2.1 Experimental setup 9
2.1.1 PC with a DAQ card 10
2.1.2 Ultrasound engine with a linear array transducer 10
2.1.3 Programmable magnetic pulser 10
2.1.4 Electromagnet 12
2.1.5 Phantom preparation 13
2.2 Probe design 15
2.3 Cyclic pulsed magnetic field 17
2.4 Ultrafast plane-wave imaging 19
2.5 Signal processing 21
2.5.1 Beamforming 22
2.5.2 Magneto-motion tracking 23
2.5.3 Matched filtering with projection window 25
2.6 Practical tracking lower bound 27
Chapter 3 Experimental Results and Discussion 28
3.1 Vibration isolation 28
3.2 Field of View 31
3.3 Penetration depth and practical tracking lower bound 35
Chapter 4 Conclusion and Future Work 39
4.1 Conclusion 39
4.2 Future work 40
References 42

[1] Mehrmohammadi M, Yoon KY, Qu M, Johnston KP, Emelianov SY. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters. Nanotechnology 2011;22(4):045502-.
[2] Mehrmohamamdi M, Qu M, Ma LL, Romanovicz DK, Johnston KP, Sokolov KV, et al. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles. Nanotechnology 2011;22(41):415105-.
[3] Chen D, Tang Q, Li X, Zhou X, Zang J, Xue W-q, et al. Biocompatibility of magnetic Fe(3)O(4) nanoparticles and their cytotoxic effect on MCF-7 cells. International Journal of Nanomedicine 2012;7:4973-82.
[4] Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007;2:751.
[5] Jeswani G, Paul SD. Chapter 15 - Recent Advances in the Delivery of Chemotherapeutic Agents. In: Grumezescu AM, editor Nano- and Microscale Drug Delivery Systems. Elsevier; 2017, p. 281-98.
[6] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews 2003;55(3):329-47.
[7] Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert opinion on drug delivery 2014;11(9):1449-70.
[8] Qu M, Mehrmohammadi M, Emelianov SY. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging. Photoacoustics 2015;3(3):107-13.
[9] Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, in’t Zandt R, et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of (68)Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Scientific Reports 2017;7:4824.
[10] Somasundaram SK, Chicken DW, Keshtgar MR. Detection of the sentinel lymph node in breast cancer. British medical bulletin 2007;84(1):117-31.
[11] Fung AD, Collins JA, Campassi C, Ioffe OB, Staats PN. Performance characteristics of ultrasound-guided fine-needle aspiration of axillary lymph nodes for metastatic breast cancer employing rapid on-site evaluation of adequacy: analysis of 136 cases and review of the literature. Cancer cytopathology 2014;122(4):282-91.
[12] Magneto-Science: Magnetic Field Effects on Materials: Fundamentals and Applications (Springer Series in Materials Science) 1 edition ed.: Springer.
[13] Rikken RS, Nolte RJ, Maan JC, van Hest JC, Wilson DA, Christianen PC. Manipulation of micro- and nanostructure motion with magnetic fields. Soft matter 2014;10(9):1295-308.
[14] Fink M, Ermert H, Lyer S, Alexiou C. Sonographic detection of magnetic nanoparticles for Magnetic Drug Targeting using coded magnetic fields. 2016 IEEE International Ultrasonics Symposium (IUS). 2016:1-6.
[15] Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Physics in medicine and biology 2005;50(23):5597-618.
[16] Al-Bender F, Colombo F, Reynaerts D, Villavicencio R, Waumans T. Dynamic Characterization of Rubber O-Rings: Squeeze and Size Effects. Advances in Tribology 2017;2017:12.
[17] Houng J-Y. Development of a pulsed magnetomotive ultrasound imaging system. Electrical Engineering. National Tsing Hua university, Hsinchu, Taiwan, R.O.C.; 2016.
[18] Chang Y-C. Ultrafast cyclic magnetomotive ultrasound imaging of sentinel lymph nodes: in vivo small animal study. Electrical Engineering. National Tsing Hua university, Hsinchu, Taiwan, R.O.C.; 2017.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *