|
[1] Ritaban Dutta, David Morgan, Nicky Baker, Julian W. Gardner, Evor L. Hines, “Identification of Staphylococcus aureus infections in hospital environment: electronic nose based approach”, Sensors and Actuators B: Chemical, Volume 109, Issue 2, Pages 355-362, 2005 [2] Wilson AD, Baietto M. “Advances in electronic-nose technologies developed for biomedical applications”, Sensors (Basel). 2011;11(1):1105–1176. [3] J. Goschnick, I. Koronczi, M. Frietsch, I. Kiselev, “Water pollution recognition with the electronic nose KAMINA”, Sensors and Actuators B: Chemical, Volume 106, Issue 1, Pages 182-186, 2005 [4] R.W. Moncrieff, “An instrument for measuring and classifying odours”, J.Appl.Physiol.,16 (1961) 742. [5] Wilkens, W.F., Hartman, J.D, “An Electronic Analog for the Olfactory Processes”, J. Food Sci. 1964, 372–378. [6] K. Persaud, G. Dodd, “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose”, Nature 1982, 299, 352−355. [7] J.W. Gardner, P. N. Bartlett, G. H. Dodd, and H. V. Shurmer, “Pattern recognition in the Warwick Electronic Nose”, in 8th Int. Congress of European Chemoreception Research Organisation, University of Warwick, UK, July 1987 [8] J.W. Gardner, and P.N. Bartlett, "A Brief History of Electronic Noses", Sensors and Actuators B, vol 18, pp. 211–220 , 1994 [9] https://www.figaro.co.jp/en/company/history.html [10] Rahul Prajesh, Nishit Jain, V K Khanna, V Gupta, Ajay Agarwal, “MEMS based Integrated Gas Sensor for NO2 and NH3”, J. ISSS Vol. 3 No. 3, pp. 1-6, Sept. 2014. [11] T. C. Pearce, et al., “Handbook of Machine Olfaction: electronic nose technology”, Wiley-VCH, 2003. [12] I. Eisele, T. Doll, M. Burgmair, “Low power gas detection with FET sensors”, Sensors and Actuators B: Chemical, Volume 78, Issues 1–3, 2001 [13] Bum-Joon Kim, Jung-Sik Kim, “Highly sensitive dual-FET hydrogen gas sensors with a surface modified gate electrode”, International Journal of Hydrogen Energy, Volume 40, Issue 35, 2015 [14] Bai H, Shi G., “Gas Sensors Based on Conducting Polymers”, Sensors (Basel). 2007;7(3):267–307. Published 2007 Mar 7. [15] 吳景怡,“適用於電子鼻晶片中與標準CMOS製程相容之積體化導電聚合物氣體感測器陣列及其適應介面電路”,國立清華大學碩士學位論文,民國99年. [16] A. Tuantranont, A. Wisitsora-At, P. Sritongkham, K. Jaruwongrungsee, “A review of monolithic multichannel quartz crystal microbalance: A review”, Anal. Chim. Acta, 2011, 687, 114–128. [17] Oliva, S. U. “Smart Chemical Sensors: Concepts and Application.”Ph.D Thesis, University of Barcelona, Barcelona, 2012 [18] 楊啟榮博士 教授, “氧化鋅奈米線之製備與應用技術”, 國立台灣師範大學 機電科技學系 [19] M. F. Hribšek, D. V. Tosšić, and M. R. Radosavljević, “Surface acoustic wave sensors in mechanical engineering,” FME Trans., vol. 38, no. 1, pp. 11–18, 2010. [20] Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. “Advanced Micro- and Nano-Gas Sensor Technology: A Review.” Sensors 2019, 19, 1285. [21] M. Grassi, P. Malcovati and A. Baschirotto, "A 160 dB Equivalent Dynamic Range Auto-Scaling Interface for Resistive Gas Sensors Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 518-528, March 2007. [22] X. Mu, E. Covington, D. Rairigh, C. Kurdak, E. Zellers and A. J. Mason, "CMOS Monolithic Nanoparticle-Coated Chemiresistor Array for Micro-Scale Gas Chromatography," in IEEE Sensors Journal, vol. 12, no. 7, pp. 2444-2452, July 2012. [23] M. Grassi, P. Malcovati and A. Baschirotto, "A 141-dB Dynamic Range CMOS Gas-Sensor Interface Circuit Without Calibration With 16-Bit Digital Output Word," in IEEE Journal of Solid-State Circuits, vol. 42, no. 7, pp. 1543-1554, July 2007. [24] B. Calvo, N. Medrano and S. Celma, "A full-scale CMOS voltage-to-frequency converter for WSN signal conditioning," Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 3088-3091. [25] C. Chiang and C. Hsieh, "Design of a CMOS Digitized Gas Transducer With Noise Shaping for CO2 Concentration Monitoring Applications," in IEEE Sensors Journal, vol. 16, no. 4, pp. 975-982, Feb.15, 2016. [26] D. Barrettino, M. Graf, S. Taschini, S. Hafizovic, C. Hagleitner and A. Hierlemann, "CMOS Monolithic Metal–Oxide Gas Sensor Microsystems," in IEEE Sensors Journal, vol. 6, no. 2, pp. 276-286, April 2006. [27] K. T. Ng, F. Boussaid and A. Bermak, "A CMOS Single-Chip Gas Recognition Circuit for Metal Oxide Gas Sensor Arrays," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1569-1580, July 2011. [28] A. Paidimarri, D. Griffith, A. Wang, G. Burra and A. P. Chandrakasan, "An RC Oscillator With Comparator Offset Cancellation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1866-1877, Aug. 2016. [29] J. Park, K. Park, T. Kim, S. Shin, C. Park and H. Yoo, "Three-Electrode Metal-Oxide Gas Sensor System With CMOS Interface IC," in IEEE Sensors Journal, vol. 17, no. 3, pp. 784-793, 1 Feb.1, 2017. [30] A. Depari, A. Flammini, E. Sisinni, A. De Marcellis, G. Ferri and P. Mantenuto, "Fast, Versatile, and Low-Cost Interface Circuit for Electrochemical and Resistive Gas Sensor," in IEEE Sensors Journal, vol. 14, no. 2, pp. 315-323, Feb. 2014. [31] C. Chiang, Y. Lu and L. Lin, "A CMOS Fish Spoilage Detector for IoT Applications of Fish Markets," in IEEE Sensors Journal, vol. 18, no. 1, pp. 375-381, 1 Jan.1, 2018. [32] 張佳琳,“適用於電子鼻系統化學電阻式氣體感測器之適應介面電路”,國立清華大學碩士學位論文,民國102年 [33] L. C. Álvarez-Simón and M. T. Sanz-Pascual, "A low-power low-voltage CMOS Resistance-to-Period Converter," 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, 2012, pp. 610-613. [34] J. Hopfield, "Pattern Recognition Computation Using Action Potential Timing for Stimulus Representation", Nature, 376, 1995, pp. 33-36.
|