帳號:guest(3.144.84.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):紀証壹
作者(外文):Chi, Cheng-Yi
論文名稱(中文):運用於極化碼之可調變列表大小之列表連續消除解碼
論文名稱(外文):A Successive Cancellation List Decoding Using Variable List Sizes For Polar Codes
指導教授(中文):翁詠祿
指導教授(外文):Ueng, Yeong-Luh
口試委員(中文):王忠炫
陳彥銘
李晃昌
口試委員(外文):Wang, Chung-Hsuan
Chen, Yen-Ming
Lee, Huang-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061576
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:極化碼列表連續消除解碼計算複雜度
外文關鍵詞:polar codesuccessive cancellation list decodingcomputational complexity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:356
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
極化碼現今多被應用在錯誤更正碼,是現今唯一被嚴格證明能達到香濃極限的編碼技術。而極化碼的解碼演算法中,列表連續消除解碼演算法相較於連續消除演算法,因有較好的解碼性能,於5G通訊之增強型行動頻寬通訊中被廣泛運用。 然而傳統列表連續消除解碼因其計算複雜度較複雜需花費更多的解碼時間,所以本文提出了新的定義列表大小的方法,使其能夠減少列表大小卻能達到相對應列表的解碼性能,以減少解碼所需的時間。 目前已被提出能減少列表連續消除解碼演算法之計算複雜度的方法有以下兩種類別: 提早終止解碼、適應性列表連續消除,本論文基於列表連續消除演算法進行改良,進行分析路徑度量值的範圍 (Path Metric Range) 和歸納出臨界集合(Critical Set),綜合模擬分析,提出新的定義列表大小的方法,進而減少解碼過程中不必要的解碼路徑,降低整體解碼的計算複雜度。此解碼方法,相較傳統連續消除演算法能減少約$44\%$的計算複雜度。
Polar codes which had been proved to achieve Shannon limit, nowadays, have been applied for channel coding scheme for the enhanced mobile broadband (eMBB) scenario of 5G communication. The successive cancellation (SC) decoding and successive cancellation list (SCL) decoding have been adopted as polar code decoding. Compared to SC decoding, SCL decoding has a better error correction performance but it requires more computational complexity. The conventional SCL decoding splits the decoding path with fixed list size, and it will lead to split unnecessary path which makes the process of decoding increase unnecessary computational complexity. This thesis proposes a new method to redefine the list size in the polar code to reduce the average number of list size. According to the analysis of the path metric range (PMR) and the critical set (CS), the resizing range can be predefined in advance. By analysing the PMR and the critical set, it can be known that error occurs in some specific ranges. Therefore, compared to conventional SCL decoding, the total computational complexity of proposed SCL decoding can be decreased up to 44%.
Abstract I
中文摘要 II
Contents III
List of figures V
List of Tables VIII
1 Introduction 1
1.1 Introduction 1
1.2 Paper Format 2
2 Preliminary 3
2.1 Polar encoding 3
2.2 Successive cancellation decoding 4
2.2.1 Successive cancellation list decoding 5
2.2.2 CRC-aided SCL decoding 6
2.3 Review of efficient SCL decoding method 7
3 The Efficient List Resizing Scheme For SCL Decoding Using Off-line Analysis 11
3.1 Off-line analysis for the list size 12
3.2 Definition of path metric range 13
3.3 Definition of critical set 14
3.4 Proposed list resizing scheme 16
3.4.1 The first step for analysis of resizing range 16
3.4.2 Include critical set for the analysis of resizing range 18
3.4.3 Improvement for the base list size 20
3.5 The reduction of computational complexity 21
3.6 Simulation results 23
3.6.1 Resizing scheme with different conditions 23
3.6.2 Compared with the dynamic SCL decoding 27
3.6.3 Compared with the conventional SCL decoding 31
4 Conclusion 40
Bibliography 41
[1] E.~Arikan, ``Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,'' IEEE Transactions on Information Theory, vol.~55, no.~7, pp. 3051--3073, July 2009.
[2] R.~Gallager, ``Low-density parity-check codes,'' IRE Transactions on Information Theory, vol.~8, no.~1, pp. 21--28, Jan. 1962.
[3] C.~Berrou, A.~Glavieux, and P.~Thitimajshima, ``Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1,'' IEEE International Conference on Communications, vol.~2, pp. 1064--1070 vol.2, May 1993.
[4] E.~Sasoglu, E.~Telatar, and E.~Arikan, ``Polarization for arbitrary discrete memoryless channels,'' in 2009 IEEE Information Theory Workshop, pp. 144--148, Oct. 2009.
[5] I.~Tal and A.~Vardy, ``List decoding of polar codes,'' in IEEE
International Symposium on Information Theory Proceedings, pp. 1--5, Jul. 2011.
[6] K.~Niu and K.~Chen, ``CRC-aided decoding of polar codes,'' IEEE Communications Letters, vol.~16, no.~10, pp. 1668--1671, Oct. 2012.
[7] M. Rowshan, and E. Viterbo, ``Stepped list decoding for polar codes,'' IEEE Int. Symp. Turbo Codes and Iterative Information Processing, pp. 1-5, Dec. 2018.
[8] R.~Mori and T.~Tanaka, ``Performance and construction of polar codes on symmetric binary-input memoryless channels,'' in IEEE International Symposium on Information Theory, pp. 1496--1500, Jun. 2009.
[9] A.~Balatsoukas-Stimming, M.~B. Parizi, and A.~Burg, ``LLR-based successive cancellation list decoding of polar codes,'' IEEE Transactions on Signal Processing, vol.~63, no.~19, Oct. 2015.
[10] R1-1708833, Nokia, Alcatel-Lucent Shanghai Bel, ``Design details of distributed CRC," 3GPP TSG RAN WG1 \#89, Hangzhou, China, 15th-19th, May 2017.
[11] R1-1705757, NTT DOCOMO, ``Distributed simple parity check Polar codes," 3GPP TSG RAN WG1 \#88bis, Spokane, USA, 3rd-7th, April 2017.
[12] C. Zhang, Z. Wang, X. You, and B. Yuan, ``Efficient adaptive list successive cancellation decoder for polar codes,'' Proc. Asilomar Conference on Signals, Systems and Computers (Asilomar), pp. 126–130, Nov 2014.
[13] W. Song, C. Zhang, S. Zhang, and X. You, ``Efficient adaptive successive cancellation list decoders for polar codes,'' IEEE International Conference on Digital Signal Processing (DSP), pp. 218 – 222, Oct. 2016.
[14] D. Guan, K. Niu, C. Dong and P. Zhang, ``Successive Cancellation Priority Decoding of Polar Codes,'' IEEE Access, vol. 7, pp. 9575-9585, Jan. 2019.
[15] K. Niu and K. Chen, ``Stack decoding of polar codes,'' Electron. Lett., vol. 48, no. 12, pp. 695 - 697, Jun. 2012.
[16] K. Chen, B. Li, H. Shen, J. Jin, D. Tse, ``Reduce the Complexity of List Decoding of Polar Codes by Tree-Pruning,'' IEEE Communications Letters, vol. 20, no. 2, pp. 204-207, Feb. 2016.
[17] H. Zhou, C. Zhang, W. Song, S. Xu, and X. You, ``Segmented crc-aided SC list polar decoding,'' IEEE Vehicular Technology Conference (VTC Spring), pp. 1-5, May 2016.
(此全文20250101後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *