帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡鈺蓉
作者(外文):Jian, Yu-Rong
論文名稱(中文):用於改善3D-IC導線良率的自動針痕分析
論文名稱(外文):Automated Probe-Mark Analysis for 3D-IC Interconnect Yield Improvement
指導教授(中文):吳誠文
指導教授(外文):Wu, Cheng-Wen
口試委員(中文):李昆忠
李進福
黃錫瑜
口試委員(外文):Lee, Kuen-Jong
Li, Jin-Fu
Huang, Shi-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061569
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:53
中文關鍵詞:3D-IC連接測試針痕分析良率改善
外文關鍵詞:3D-ICinterconnect testprobe-mark analysisyield improvement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:343
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在半導體晶圓測試時,是藉由探針接觸待測的目標物來進行測試。因此我們需要去檢查探針是否有正確地接觸到待測的目標物以確保量測到的數據是正確的。待測的目標物可以是焊墊、點針墊、銅凸塊,或是微凸塊。我們也需要去確認測試後留下的針痕不會對於測試目標物的主要功能造成負面的影響。因此,我們想要去知道針痕在測試目標物上的(相對)位置和面積大小。在這篇論文中,我們開發了一套用於針痕分析的軟體。它的輸入為測試目標物的高解析度影像。藉由影像處理的輔助,此套軟體可以辨識出測試目標物和針痕的輪廓、中心點和面積。接著,計算出針痕在測試目標物中心點上的偏移量和針痕面積占測試目標物面積的百分比。此套軟體可以處理頂視圖和斜視圖的影像、不同對比度設定的影像、圓形的測試目標物,和在測試目標物上有多個針痕的例子。
我們成功利用此套軟體來特徵化三維堆疊IC之堆疊前測試時探測由微凸塊所構成的細間距之大陣列的品質。JEDEC Wide-I/O2 介面是由1752顆的微凸塊所構成陣列,在此陣列中,微凸塊彼此間的距離為40μm。我們利用電子顯微鏡拍攝陣列中位於四個角的微凸塊,得到的影像會被當作這套軟體的輸入。此套軟體計算出的偏移量會被用於區分出探針機台和探針卡對於整體的探針對焊墊對齊精準度的貢獻。此外,此套軟體計算出來的測試目標物上針痕的相對面積對於堆疊的導線良率是一個很重要的指標。
In semiconductor wafer probing, we want to check that the probe tips land correctly on the probe targets (e.g., bond pads, dedicated probe pads, Cu pillars, or micro-bumps). We also want to make sure that probe marks do not negatively affect the main function of these probe targets. Therefore, we would like to know the (relative) position and size of the probe mark on the probe target. In this thesis, we have developed a software tool for automated probe-mark analysis. It takes as input a high-resolution image of the probed target. Using image processing routines, the tool identifies the contours, center points, and surface areas of probe target and probe mark. Subsequently, it calculates the offset of the probe mark from the center of the probe target, as well as the relative probe ‘damage’ to the target. The software tool handles top-view as well as tilted-view images, varying contrast settings, rectangular or circular probe-target shapes, and single or multiple probe marks per probe target.
We have successfully used this tool in the characterization of the quality of probing large-array fine-pitch micro-bumps in the context of pre-bond testing of 3D-stacked ICs. For JEDEC Wide-I/O2 interfaces [13] consisting of 1752 micro-bumps at 40μm pitch, Scanning Electron Microscopy (SEM) images of the four corners of the micro-bump array served as input for our analysis tool. The offsets calculated by the software tool were used to separate the contributions of both probe station and probe card to the overall probe-to-pad alignment (PTPA) accuracy. The calculated relative size of the probe mark is an important indicator for the impact of probing on the stack’s interconnect yield.
摘要 i
Abstract ii
致謝 iii
Acknowledgement iv
Table of Contents vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Works 4
1.3 Approach and Results 5
1.4 Organization 7
Chapter 2 Image Processing Techniques for Probe-Mark Inspection 8
2.1 Image Convolution 8
2.2 Image Sharpening 9
2.3 Edge Detection 10
2.4 Connected-Component Labelling 12
2.5 Merge 13
Chapter 3 Automatic Probe-Mark Recognition 14
3.1 SEM Image of the Micro-Bump 14
3.2 Contour of the Micro-Bump 15
3.3 Single Probe Mark 17
3.4 Area of the Probe Mark 20
3.5 Multiple Probe Marks 23
Chapter 4 Experimental Results and Discussion 30
4.1 Contour of the Micro-Bump 31
4.2 Probe-Mark Recognition 33
4.3 Area of Probe Mark 37
4.4 Comparison of Manual and Automatic Measurements 39
4.5 Robustness 42
4.6 Discussion 47
Chapter 5 Conclusions and Future Work 50
5.1 Conclusions 50
5.2 Future Work 50
Reference 52
[1] J. Zheng, Z. Zhang, and Y. Chen, “3D Stacked Package Technology and Its Application Prospects,“ in Proc. Int. Conf. on New Trends in Information and Service Science (NISS), July 2009.
[2] S. R. Vempati, N. Su, C.H. Khong, Y. Y. Lim, K. Vaidyanathan, J. H. Lau, B. P. Liew, K. Y. Au, S. Tanary, A. Fenner, R. Erich, and J. Milla, “Development of 3-D silicon die stacked package using flip chip technology with micro bump interconnects, “ in Proc. IEEE Electronic Components and Technology Conf., pp. 980-987, May 2009.
[3] S. W. Yoon, J. H. Ku, N. Suthiwondsunthorn, P. C. Marimuthu, and F. Carson, “Fabrication and packaging of microbump interconnections for 3D TSV,” in Proc. IEEE Int. Conf. on 3D System Integration, Sept. 2009.
[4] K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, “Micro Cu Bump Interconnection on 3D Chip Stacking Technology, ” Japanese Journal of Applied Physics, Vol. 43, No. 4B, pp. 2264-2270, Apr. 2004.
[5] E. Beyne, “The 3-D Interconnect Technology Landscape,” IEEE Design & Test, June 2016.
[6] E. J. Marinissen, B. D. Wachter, K. Smith, J. Kiesewetter, M. Taouil, and S. Hamdioui, “Direct Probing on Large-Array Fine-Pitch Micro-Bumps of a Wide-I/O Logic-Memory Interface,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2014.
[7] E. J. Marinissen, “Challenges and Emerging Solutions in Testing TSV-Based 2.5D- and 3D-Stacked IC, “ in Proc. Design, Automation, and Test in Europe (DATE), Mar. 2012.
[8] E. J. Marinissen, F. Fodor, B. D. Wachter, J. Kiesewetter, E. Hill, and K. Smith, “A Full-Automatic Test System for Characterizing Wide-I/O Micro-Bump Probe Cards,” Semiconductor Wafer Test Workshop (SWTW), 2017 http://www.swtest.org/swtw_library/2017proc/PDF/S07_04_Marinissen_SWTW2017R2.pdf
[9] H. Tsukahara, Y. Nishiyama, F. Takahashi, T. Fuse, M. Ando, and T. Nishino, “High-speed 3D inspection system for solder bumps,” in Proc. SPIT, Vol. 2597, pp. 168-177, Oct. 1995.
[10] R. Asgari, “Copper Pillar and Micro Bump Inspection Requirements and Challenges,” in Proc. Int. Wafer-Level Packaging Conf. (IWLPC), Oct. 2009.
[11] G. Liao, P. Chen, L. Du, L. Su, Z. Liu, Z. Tang, and T. Shi, “Using SOM neural network for X-ray inspection of missing-bump defects in three-dimensional integration,” Microelectronics Reliability, Vol. 55, pp. 2826-2832, Dec. 2015.
[12] W.-Y. Wu, C.-W. Hung, and W.-B. Yu, “The development of automated solder bump inspection using machine vision techniques,” Int. Journal of Advanced Manufacturing Technology, Vol. 69, pp. 509-523, Oct. 2013.
[13] JEDEC, “Wide I/O2 (JEDEC Standard JESD229-2),” JEDEC Solid State Technology Association, Aug. 2014 http://www.jedec.org
[14] J. Ludwig, “Image Convolution,” Portland State University. http://web.pdx.edu/~jduh/courses/Archive/geog481w07/Students/Ludwig_ImageConvolution.pdf
[15] Rashmi, M. Kumar, and R. Saxena, “Algorithm and Technique on Various Edge Detection: A Survey,” Signal & Image Processing: An Int. Journal (SIPIJ), Vol. 4, No. 3, June 2013.
[16] J. M. S. Prewitt, “Object Enhancement and Extraction,” Picture Processing and Psychopictorics, B. Lipkin and A. Rosenfeld, eds., Academic Press, 1970.
[17] I. Sobel, “History and Definition of the so-called “Sobel Operator”,” Feb. 2014.
[18] J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, Nov. 1986.
[19] K. Wu, E. Otoo, and A. Shoshani, “Optimizing Connected Component Labelling Algorithms,” in Proc. SPIE Conf. Medical Imaging, Vol. 2747, 2005.
[20] Applied Materials, “SEMVision(TM) G3 FIB User Manual”, Revision A, Dec. 2004.
[21] E. J. Marinissen, F. Fodor, A. Podpod, M. Stucchi, Y.-R. Jian, and C.-W. Wu, “Solutions to Multiple Probing Challenges for Test Access to Multi-Die Stacked Integrated Circuits,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *