帳號:guest(18.220.116.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥朋
作者(外文):Chen, Yan-Peng.
論文名稱(中文):應用於無線能量傳輸生醫植入式裝置之全集成線性穩壓器與整流穩壓器
論文名稱(外文):Fully Integrated Linear Regulator and Rectifying Regulator for Inductively Powered Medical Implant Devices
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
口試委員(中文):黃柏鈞
謝秉璇
口試委員(外文):Huang, Po-Chiun
Hsieh, Ping-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061568
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:無線能量傳輸線性穩壓器整流器整流穩壓器生醫植入 晶片
外文關鍵詞:wireless power transmission(WPT)linear regulatorrectifierrectifying regulatorbiomedical implant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:537
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技不斷的進步,生醫植入式裝置也逐漸成熟,讓疾病治療在藥物
與手術之外,增加了額外的治療方式。而由於半導體製程的進步,植入裝
置的功能更多樣,反應速度也更快,讓植入式設計更加穩定且有彈性。現
今的植入式裝置使用了無線能量傳輸做為供電方式,因此省去了電池植入
的必要性,在使用上更加方便。
本論提出了兩個能源管理系統架構,第一個系統架構為全集成線性穩壓
器,為了減少外掛大電容的使用,我們採用了N 型導通電晶體以強化漣
漪拒斥比,並採用雙反饋架構來增加頻寬以達到更快的暫態反應。並且在
路徑中加入了一個緩衝級的架構,降低了電荷泵漣漪對輸出電壓的影響。
電路採用TSMC 0.18 微米1P6M 製程,總面積為0.278mm2(包含測試整
流器與電荷泵,不含PAD)。此電路可以在輸入電壓1.1 伏特以上穩壓至
1.09 伏特並提供最大10mA 的輸出電流。
第二個架構為整流穩壓器,使用脈衝寬度調變(Pulse-Width Modulation)
與脈衝寬度調變(Pulse-Frequency Modulation) 來達成單階段整流並
穩壓,相較於傳統兩階段架構,省去一個濾波電容。電路使用TSMC 0.18
微米1P6M 製程,總面積為0.185mm2(不含PAD)。此電路可以在載波頻
率10Mhz 下產生1.05 伏特的輸出電壓以及10mA 最大輸出電流。
關鍵字–無線能量傳輸、線性穩壓器、整流器、整流穩壓器、生醫植入
晶片。
In this thesis, two types of the RX power management modules in wire-less powering systems are presented. The first one is the fully-integrated linear regulator and the other one is the single-stage rectifying regulator.
In order to reduce the count of the external components of biomedical implants, which would lead to large ripple of the rectifier output voltage, a N-type pass transistor is adopted in the presented linear regulator to have intrinsic filtering ability. In addition, dual feedback topology is implemented inside presented regulator to achieve higher system bandwidth and faster transient responses. The regulator is fabricated in TSMC 0.18µm 1P6M process occupying 0.278mm2 areas including the testing rectifier.
The rectifying regulator using pulse-width modulation(PWM) and pulse-frequency modulation(PFM) to accomplish single stage AC to DC regulation. Compared with conventional rectifier-LDO structure, the single stage regulator can reduce the power loss in each stage and lowering the overall quiescent power. The regulator is fabricated in TSMC 0.18µm 1P6M process occupying 0.185mm2 active areas. This rectifying regulator can regulate stable 1.05V and provides for 10mA load current at a carrier frequency of 10Mhz.
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
第1 章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 植入式系統基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 章節簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
第2 章文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 載波頻率選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 線性穩壓器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 單階段整流穩壓系統. . . . . . . . . . . . . . . . . . . . . . . . . . 9
第3 章使用全集成高電源拒斥比穩壓器之植入端穩壓系統. . . . . . . . . 12
3.1 電路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 整流器、電荷泵、時鐘恢復與能隙參考電壓電路. . . . . . . . . . 12
3.3 快速暫態反應高電源拒斥比穩壓器. . . . . . . . . . . . . . . . . . 15
3.3.1 相位邊界與穩定性分析. . . . . . . . . . . . . . . . . . . . 18
3.3.2 輸入電壓電源拒斥比. . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 電荷泵電源拒斥比. . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 穩壓器啟動分析. . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 穩壓器前模後模表現. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 穩壓器前模表現. . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 穩壓器後模表現. . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 穩壓器量測表現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 總結與文獻對比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
第4 章快速暫態反應整流穩壓器之設計與建模. . . . . . . . . . . . . . . 38
4.1 單階段整流穩壓器穩壓器. . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 操作介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 切換偏移主動式比較器. . . . . . . . . . . . . . . . . . . . 42
4.1.3 基底偏壓、電壓位準轉換器(Level Shifter) 與閘級驅動. . . 43
4.1.4 線性PWM/PFM 控制器. . . . . . . . . . . . . . . . . . . 45
4.1.5 反饋系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.6 啟動分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 脈衝寬度調變之理論模型計算. . . . . . . . . . . . . . . . . . . . . 51
4.2.1 充電階段(charging stage) . . . . . . . . . . . . . . . . . . . 53
4.2.2 共振階段(Resonant stage) . . . . . . . . . . . . . . . . . . 53
4.2.3 總環波型分析. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 電壓環增益分析. . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 電路模擬表現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 整流穩壓器前模表現. . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 整流穩壓器後模表現. . . . . . . . . . . . . . . . . . . . . . 62
4.4 量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 總結與文獻對比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
第5 章結論與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
[1] M. Mollazadeh, K. Murari, G. Cauwenberghs, and N. Thakor, “Wireless Micropower
Instrumentation for Multimodal Acquisition of Electrical and Chemical
Neural Activity,” IEEE Tran. Biomed. Circuits and Syst., vol. 3, no. 6,
pp. 388–397, Dec. 2009.
[2] Y.-K. Lo, K. Chen, P. Gad, and W. Liu, “A Fully-Integrated High-Compliance
Voltage SoC for Epi-Retinal and Neural Prostheses,” IEEE Tran. Biomed.
Circuits and Syst., vol. 7, no. 6, pp. 761–772, Dec. 2013.
[3] T. Tokuda, Y. Takeuchi, Y. Sagawa, T. Noda, K. Sasagawa, K. Nishida,
T. Fujikado, and J. Ohta, “Development and in vivo Demonstration of
CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite
Stimulation Capability,” IEEE Tran. Biomed. Circuits and Syst., vol. 4, no. 6,
pp. 445–453, Dec. 2010.
[4] M. Ghovanloo and K. Najafi, “A compact large Voltage-compliance high
output-impedance programmable current source for implantable microstimulators,”
IEEE Tran. Biomed. Eng., vol. 52, no. 1, pp. 97–105, Jan. 2005.
[5] S.-Y. Lee, M. Su, M.-C. Liang, Y.-Y. Chen, C.-H. Hsieh, C.-M. Yang, H.-Y.
Lai, J.-W. Lin, and Q. Fang, “A Programmable Implantable Microstimulator
SoC With Wireless Telemetry: Application in Closed-Loop Endocardial
Stimulation for Cardiac Pacemaker,” IEEE Tran. Biomed. Circuits and Syst.,
vol. 5, no. 6, pp. 511–522, Dec. 2011.
[6] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-Y.
Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, Y.-L. Hsin, S.-F.
Liang, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, and C.-Y. Wu, “A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for
Real-Time Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 49,
no. 1, pp. 232–247, Jan. 2014.
[7] D. Shire, S. Kelly, J. Chen, P. Doyle, M. Gingerich, S. Cogan, W. Drohan,
O. Mendoza, L. Theogarajan, J. Wyatt, and J. Rizzo, “Development and
Implantation of a Minimally Invasive Wireless Subretinal Neurostimulator,”
IEEE Tran. Biomed. Eng., vol. 56, no. 10, pp. 2502–2511, Oct. 2009.
[8] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Granacki, J. LaCoss, and
J. Wills, “Implantable biomimetic microelectronic systems design,” IEEE
Eng. in Medicine and Biology Mag., vol. 24, no. 5, pp. 66–74, Sep. 2005.
[9] J. Parramon Piella, “Energy Management, wireless and system solutions for
highly integrated implantable devices,” Doctoral dissertation, Departament
d’Enginyeria Electrònica Universitat Autònoma de Barcelona, 2001.
[10] C. Zhan and W. Ki, “Analysis and design of output-capacitor-free lowdropout
regulators with low quiescent current and high power supply rejection,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 2, pp. 625–636, Feb 2014.
[11] V. Gupta and G. A. Rincon-Mora, “A low dropout, cmos regulator with
high psr over wideband frequencies,” 2005 IEEE International Symposium
on Circuits and Systems, pp. 4245–4248 Vol. 5, May 2005.
[12] S. K. Hoon, S. Chen, F. Maloberti, J. Chen, and B. Aravind, “A low noise,
high power supply rejection low dropout regulator for wireless system-onchip
applications,” Proceedings of the IEEE 2005 Custom Integrated Circuits
Conference, 2005., pp. 759–762, Sep. 2005.
[13] C. Park, M. Onabajo, and J. Silva-Martinez, “External capacitor-less low
drop-out regulator with 25 db superior power supply rejection in the 0.4–4
mhz range,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 486–501,
Feb 2014.
[14] M. El-Nozahi, A. Amer, J. Torres, K. Entesari, and E. Sanchez-Sinencio,
“High psr low drop-out regulator with feed-forward ripple cancellation technique,”
IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 565–577,
March 2010.
[15] Y. Lim, J. Lee, S. Park, and J. Choi, “An extemal-capacitor-less low-dropout
regulator with less than −36db psrr at all frequencies from 10khz to 1ghz
using an adaptive supply-ripple cancellation technique to the body-gate,”
2017 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, April
2017.
[16] K. Keikhosravy and S. Mirabbasi, “A 0.13-mcmos low-power capacitor-less
ldo regulator using bulk-modulation technique,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 11, pp. 3105–3114, Nov
2014.
[17] R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full on-chip cmos
low-dropout voltage regulator,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 54, no. 9, pp. 1879–1890, Sep. 2007.
[18] H.-C. Yang, M.-H. Huang, and K.-H. Chen, “High-psr-bandwidth capacitorfree
ldo regulator with 50￿a minimized load current requirement for achieving
high efficiency at light loads,” WSEAS Transactions on Circuits and Systems,
vol. 7, pp. 428–437, 05 2008.
[19] L. Wang, W. Mao, C. Wu, A. Chang, and Y. Lian, “A fast transient ldo
based on dual loop fvf with high psrr,” 2016 IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS), pp. 99–102, Oct 2016.
[20] S. Chong and P. K. Chan, “A 0.9-/spl mu/a quiescent current outputcapacitorless
ldo regulator with adaptive power transistors in 65-nm cmos,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 4,
pp. 1072–1081, April 2013.
[21] X. Li, C. Tsui, and W. Ki, “A 13.56 mhz wireless power transfer system
with reconfigurable resonant regulating rectifier and wireless power control for
implantable medical devices,” IEEE Journal of Solid-State Circuits, vol. 50,
no. 4, pp. 978–989, April 2015.
[22] L. Cheng, W. Ki, and C. Tsui, “A 6.78-mhz single-stage wireless power
receiver using a 3-mode reconfigurable resonant regulating rectifier,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1412–1423, May 2017.
[23] H. S. Gougheri and M. Kiani, “Current-based resonant power delivery
with multi-cycle switching for extended-range inductive power transmission,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 9,
pp. 1543–1552, Sep. 2016.
[24] ——, “Adaptive reconfigurable voltage/current-mode power management
with self-regulation for extended-range inductive power transmission,” IEEE
International Solid-State Circuits Conference (ISSCC), pp. 374–375, Feb
2017.
[25] S. Shin, M. Choi, S. Koh, Y. Yang, S. Jung, Y. Sohn, S. Park, Y. Ju, Y. Jo,
Y. Huh, S. Choi, S. J. Kim, and G. Cho, “A 13.56mhz time-interleaved
resonant-voltage-mode wireless-power receiver with isolated resonator and quasi-resonant boost converter for implantable systems,” 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), pp. 154–156, Feb 2018.
[26] H. Lee, H. Park, and M. Ghovanloo, “A power-efficient wireless system with
adaptive supply control for deep brain stimulation,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 9, pp. 2203–2216, Sep. 2013.
[27] C. Kim, S. Ha, J. Park, A. Akinin, P. P. Mercier, and G. Cauwenberghs,
“A 144-mhz fully integrated resonant regulating rectifier with hybrid pulse
modulation for mm-sized implants,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 11, pp. 3043–3055, Nov 2017.
[28] Q. W. Low, M. Zhou, and L. Siek, “A single-stage direct-conversion ac–dc
converter for inductively powered application,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp. 892–902, May
2018.
[29] V. Talla and J. R. Smith, “Design and analysis of a high bandwidth rectifying
regulator with pwm and pfm modes,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 63, no. 12, pp. 1121–1125, Dec 2016.
[30] M. Ghovanloo and S. Atluri, “An integrated full-wave cmos rectifier with
built-in back telemetry for rfid and implantable biomedical applications,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 10,
pp. 3328–3334, Nov 2008.
[31] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 300 nw, 15 ppm/◦c, 20
ppm/v cmos voltage reference circuit consisting of subthreshold mosfets,”
IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 2047–2054, July
2009.
[32] Y. Lin and K. Tang, “An inductive power and data telemetry subsystem
with fast transient low dropout regulator for biomedical implants,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 10, no. 2, pp. 435–
444, April 2016.
[33] H. Lee and M. Ghovanloo, “An integrated power-efficient active rectifier
with offset-controlled high speed comparators for inductively powered applications,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 8, pp. 1749–1760, Aug 2011.
[34] Y. P. Lin, “Development of Capacitorless Inductive Power Transfer Subsystem
with Bidirectional Communication Capability for Implanted Applications.”
Doctoral dissertation, Department of Electrical Engineering National Tsing
Hua University, pp. 77–79, 2016.
[35] K. F. E. Lee, “A timing controlled ac-dc converter for biomedical implants,”
2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 128–
129, Feb 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *