|
[1] A. Klinefelter, N. E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava, A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, Y. Zhang, D. Akella, D. D. Wentzloff, and B. H. Calhoun, “21.3 A 6.45μW Self-Powered IoT SoC with Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015. [2] Broadcomm Inc. "Max WiFi," http://maxwifi.org/. [3] Tony Chan Carusone, David Johns, and Kenneth W. Martin, Analog Integrated Circuit Design, 2nd ed., Hoboken, NJ: John Wiley & Sons, 2012. [4] B. Murmann. "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [5] C. Liu, S. Chang, G. Huang, Y. Lin, C. Huang, C. Huang, L. Bu, and C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 386-387, 2010. [6] F. van der Goes, C. Ward, S. Astgimath, H. Yan, J. Riley, J. Mulder, S. Wang, and K. Bult, “11.4 A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 200-201, 2014. [7] Y. Lim, and M. P. Flynn, “11.5 A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 202-203, 2014. [8] M. Inerfield, A. Kamath, Su Feng, J. Hu, Yu Xinyu, V. Fong, O. Alnaggar, Lin Fang, and T. Kwan, “An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014. [9] Y. Lim, and M. P. Flynn, “26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015. [10] C. C. Liu, “27.4 A 0.35mW 12b 100MS/s SAR-Assisted Digital Slope ADC in 28nm CMOS,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 462-463, 2016. [11] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed., Boston: McGraw-Hill, 2010. [12] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter Analysis of High-Speed Sampling Systems,” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 220-224, 1990. [13] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, 2010. [14] P. M. Figueiredo, and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, 2006. [15] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010. [16] S. E. Hsieh, and C. C. Hsieh, “A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC With Semi-Resting DAC,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, 2018. [17] Zhou Yuan, Xu Benwei, and Chiu Yun, “A 12b 160MS/s Synchronous Two-Step SAR ADC Achieving 20.7fJ/step FoM with Opportunistic Digital Background Calibration,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014. [18] W. Kim, H. K. Hong, Y. J. Roh, H. W. Kang, S. I. Hwang, D. S. Jo, D. J. Chang, M. J. Seo, and S. T. Ryu, “A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC,” IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1826-1839, 2016. [19] M. Tamba, A. Shimizu, H. Munakata, and T. Komuro, “A Method to Improve SFDR with Random Interleaved Sampling Method,” Proceedings International Test Conference 2001 (Cat. No.01CH37260), pp. 512-520, 2001. [20] S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, J. Gealow, and G. Manganaro, “A 12-b 10-GS/s Interleaved Pipeline ADC in 28-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3204-3218, 2017. [21] S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, and J. Gealow, “16.7 A 12b 10GS/s Interleaved Pipeline ADC in 28nm CMOS Technology,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 288-289, 2017. [22] J. Y. Lin, and C. C. Hsieh, “A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 562-572, 2017. [23] S. E. Hsieh, and C. C. Hsieh, “A 0.4-V 13-bit 270-kS/s SAR-ISDM ADC With Opamp-Less Time-Domain Integrator,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1648-1656, 2019. [24] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s Asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, pp. 241-242, 2010. [25] S. E. Hsieh, and C. C. Hsieh, “A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With a Shifted Monotonic Switching Procedure in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, 2016. [26] H. Tai, Y. Hu, H. Chen, and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 196-197, 2014. [27] C. Y. Liou, and C. C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with Charge-Average Switching DAC in 90nm CMOS,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 280-281, 2013. [28] V. Hariprasath, J. Guerber, S. Lee, and U. Moon, “Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency,” Electronics Letters, vol. 46, no. 9, pp. 620-621, 2010. [29] C. P. Huang, H. W. Ting, and S. J. Chang, “Analysis of Nonideal Behaviors Based on INL/DNL Plots for SAR ADCs,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1804-1817, 2016. [30] W. Tseng, W. Lee, C. Huang, and P. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, 2016. [31] B. Sung, D. Jo, I. Jang, D. Lee, Y. You, Y. Lee, H. Park, and S. Ryu, “26.4 A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015. |