帳號:guest(18.119.135.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宜玄
作者(外文):Lin, Yi-Hsuan
論文名稱(中文):一個高能源效率十二位元每秒取樣一億次之時間交錯連續漸進式類比數位轉換器使用共用半休眠切換技術
論文名稱(外文):An Energy-Efficient 12b 100MS/s Time-Interleaved SAR ADC Using Shared Semi-Resting Switching Technique
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
口試委員(中文):洪浩喬
邱進峯
陳柏宏
口試委員(外文):Hong, Hao-Chiao
Chiu, Chin-Fong
Chen, Po-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061550
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:108
中文關鍵詞:高速低電壓高能源效率時間交錯式連續漸進式類比數位轉換器
外文關鍵詞:high-speedlow-voltageenergy-efficienttime-interleavedSAR ADC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:336
  • 評分評分:*****
  • 下載下載:54
  • 收藏收藏:0
本論文提出一個使用共用半休眠切換技術以求高能源效率的12位元、每秒取樣1億次之時間交錯連續漸近式類比數位轉換器。
在物聯網應用當中,連網裝置通常以低電壓操作有較佳的能源效率表現也有較長的電池續航力,因此本論文之類比數位比較器設計在一個0.5伏與1伏雙供電之系統。低電壓循序漸近類比數位轉換器之轉換速率非常低,為了達到每秒取樣一億次的取樣速率,採用時間交錯式的系統架構。當中的子轉換器延續半休眠切換之概念,以求較低的電容切換功耗。本論文改良半休眠切換應用於時間交錯式架構,提出共用半休眠切換技術,透過重複使用閒置的子轉換器,降低所需之子轉換器總數。
本電路之原型晶片採用40奈米1P9M互補式金氧半導體製程製作,核心電路面積為600×870 μm2。在1.0/0.5 V供電以及每秒取樣1000萬次操作之下,本晶片可達到56.145 dB之訊號雜訊加失真比(SNDR),對應等效解析度(ENOB)為9.03位元。其功耗為35 μW,換算能源效率指標(Walden figure-of-merit, FoMW)為9.36 fJ/conversion-step。在取樣頻率為每秒取樣1億次時,僅達到46.121 dB之SNDR,ENOB為7.369位元,其功耗為284 μW,能源效率指標FoM為17.28 fJ/conversion-step。
This thesis presents a 12-bit 100MS/s time-interleaved (TI) successive-approximation register (SAR) analog-to-digital converter (ADC) using shared semi-resting (SSR) switching technique.
For Internet-of-Things (IoT) applications, the connecting devices usually operate in low voltage supply for better energy efficiency and longer lifetime of batteries. Thus, the proposed ADC is designed in a dual supply system of 0.5 V and 1 V. The conversion rate of a low-voltage SAR ADC is slow. To achieve targeted 100MS/s sampling rate, the ADC adopts time-interleaved architecture. The sub-ADCs inherit the low capacitor switching power concept of the semi-resting (SR) switching technique. This thesis proposes the shared semi-resting (SSR) switching technique, which is a reformed SR technique used in TI architecture. The total required number of sub-ADCs is reduced by re-using idle sub-ADCs.
The prototype was fabricated in 40 nm 1P9M CMOS technology with a core area of 600×870 μm2. At 1.0/0.5 V supply voltage and 10 MS/s sampling rate, the ADC achieves SNDR 56.145 dB with corresponding ENOB 9.03-bit and consumes a power of 0.035 mW, resulting in a Walden figure-of-merit (FoMW) 6.69 fJ/conversion-step. At 100 MS/s sampling rate, the ADC achieves SNDR 46.121 dB with ENOB 7.369-bit and consumes a power of 284 μW, resulting FoMW 17.28 fJ/conversion-step.
摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Performance Metrics of ADC 3
1.1.1 Nyquist Sampling Theorem 4
1.1.2 Resolution 5
1.1.3 Quantization Error 6
1.1.4 Offset and Gain Error 8
1.1.5 Differential Nonlinearity (DNL) 9
1.1.6 Integral Nonlinearity (INL) 10
1.1.7 Signal-to-Quantization-Noise Ratio (SQNR) 11
1.1.8 Signal-to-Noise Ratio (SNR) 11
1.1.9 Spurious-Free Dynamic Range (SFDR) 12
1.1.10 Signal-to-Noise and Distortion Ratio (SNDR) 12
1.1.11 Effective Number of Bits (ENOB) 12
1.1.12 Walden Figure-of-Merit (FoMW) 13
1.2 ADC Architecture 13
1.3 Target Specifications 14
1.4 Thesis Organization 16
Chapter 2 Successive Approximation Register (SAR) ADC Overview 17
2.1 Introduction of SAR ADC 17
2.2 Operation Procedure of Conventional SAR ADC 18
2.3 Sample and Hold (S/H) Circuit 19
2.3.1 On-Resistance of MOS Switch 20
2.3.2 Charge Injection 21
2.3.3 Clock Feedthrough 22
2.3.4 kT/C Noise 23
2.3.5 Sampling Jitter 24
2.4 Capacitive DAC (C-DAC) 25
2.4.1 Parasitic Capacitance 26
2.4.2 Mismatch of Capacitors 27
2.4.3 Settling Error 28
2.5 Dynamic Comparator 29
2.5.1 Input Referred Offset 31
2.5.2 Kickback Noise 32
2.6 Asynchronous SAR Logic 33
2.7 Summary 35
Chapter 3 Circuit Design Considerations 36
3.1 Differential SAR ADC 36
3.2 Sample and Hold (S/H) Circuit 37
3.3 Low-Voltage Time-Interleaved (LVTI) SAR ADC 38
3.4 Semi-Resting (SR) Switching 40
3.4.1 Switching Procedure 40
3.4.2 SR ADC in Time-Interleaved Architecture 43
3.5 Proposed Shared SR (SSR) Switching 44
3.5.1 Switching Procedure 45
3.5.2 MSB Decision Method 46
3.5.3 Non-Typical Sampling Clocks 47
3.6 Non-Ideal Effects of SSR Architecture 48
3.6.1 Sampling Clock Skew 48
3.6.2 Offset Error Mismatch 49
3.6.3 Gain Error Mismatch 51
3.7 Random Mode Assigning (RMA) 52
3.8 Summary 53
Chapter 4 Circuit Implementation of TI SAR ADC with SSR Switching 54
4.1 Proposed ADC Architecture 54
4.2 Design of Rotation Logic 55
4.2.1 Mode Assigning for Sub-ADCs 57
4.2.2 Utilization Order Regularity of The Sub-ADCs 59
4.2.3 Random Mode Assigning (RMA) 60
4.3 Sampling Clock Synchronization 62
4.4 Digital Offset Cancellation 64
4.5 Design of Polarity Detector (PD) 65
4.6 Design of Sample and Hold 67
4.7 Design of SAR Sub-ADCs 71
4.7.1 Cascade-Input (CI) Dynamic Comparator 73
4.7.2 Capacitive DAC (C-DAC) 75
4.7.3 INL-Splitting (INLS) DAC Switching 76
4.7.4 Asynchronous SAR Logic 80
4.8 Design of Data Readout Multiplexer 82
4.9 Summary 83
Chapter 5 Experimental Results 84
5.1 Pre-Layout Simulations 84
5.2 Post-Layout Simulations 85
5.3 Chip Micrograph 86
5.4 Measurement Environment Setup 87
5.5 Measurement Results 88
5.5.1 Single Sub-ADC Performance 88
5.5.2 Low Sampling Rate TI Performance 91
5.5.3 High Sampling Rate Performance 93
5.5.4 RMA Performance 97
5.6 Performance Summary and Comparison 99
5.7 Summary 101
Chapter 6 Conclusion and Future Work 102
6.1 Conclusion 102
6.2 Future Work 103
Bibliography 105
[1] A. Klinefelter, N. E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava, A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, Y. Zhang, D. Akella, D. D. Wentzloff, and B. H. Calhoun, “21.3 A 6.45μW Self-Powered IoT SoC with Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.
[2] Broadcomm Inc. "Max WiFi," http://maxwifi.org/.
[3] Tony Chan Carusone, David Johns, and Kenneth W. Martin, Analog Integrated Circuit Design, 2nd ed., Hoboken, NJ: John Wiley & Sons, 2012.
[4] B. Murmann. "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[5] C. Liu, S. Chang, G. Huang, Y. Lin, C. Huang, C. Huang, L. Bu, and C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 386-387, 2010.
[6] F. van der Goes, C. Ward, S. Astgimath, H. Yan, J. Riley, J. Mulder, S. Wang, and K. Bult, “11.4 A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 200-201, 2014.
[7] Y. Lim, and M. P. Flynn, “11.5 A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 202-203, 2014.
[8] M. Inerfield, A. Kamath, Su Feng, J. Hu, Yu Xinyu, V. Fong, O. Alnaggar, Lin Fang, and T. Kwan, “An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014.
[9] Y. Lim, and M. P. Flynn, “26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.
[10] C. C. Liu, “27.4 A 0.35mW 12b 100MS/s SAR-Assisted Digital Slope ADC in 28nm CMOS,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 462-463, 2016.
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed., Boston: McGraw-Hill, 2010.
[12] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter Analysis of High-Speed Sampling Systems,” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 220-224, 1990.
[13] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, 2010.
[14] P. M. Figueiredo, and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, 2006.
[15] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010.
[16] S. E. Hsieh, and C. C. Hsieh, “A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC With Semi-Resting DAC,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, 2018.
[17] Zhou Yuan, Xu Benwei, and Chiu Yun, “A 12b 160MS/s Synchronous Two-Step SAR ADC Achieving 20.7fJ/step FoM with Opportunistic Digital Background Calibration,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014.
[18] W. Kim, H. K. Hong, Y. J. Roh, H. W. Kang, S. I. Hwang, D. S. Jo, D. J. Chang, M. J. Seo, and S. T. Ryu, “A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC,” IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1826-1839, 2016.
[19] M. Tamba, A. Shimizu, H. Munakata, and T. Komuro, “A Method to Improve SFDR with Random Interleaved Sampling Method,” Proceedings International Test Conference 2001 (Cat. No.01CH37260), pp. 512-520, 2001.
[20] S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, J. Gealow, and G. Manganaro, “A 12-b 10-GS/s Interleaved Pipeline ADC in 28-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3204-3218, 2017.
[21] S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, and J. Gealow, “16.7 A 12b 10GS/s Interleaved Pipeline ADC in 28nm CMOS Technology,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 288-289, 2017.
[22] J. Y. Lin, and C. C. Hsieh, “A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 562-572, 2017.
[23] S. E. Hsieh, and C. C. Hsieh, “A 0.4-V 13-bit 270-kS/s SAR-ISDM ADC With Opamp-Less Time-Domain Integrator,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1648-1656, 2019.
[24] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s Asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, pp. 241-242, 2010.
[25] S. E. Hsieh, and C. C. Hsieh, “A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With a Shifted Monotonic Switching Procedure in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, 2016.
[26] H. Tai, Y. Hu, H. Chen, and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 196-197, 2014.
[27] C. Y. Liou, and C. C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with Charge-Average Switching DAC in 90nm CMOS,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 280-281, 2013.
[28] V. Hariprasath, J. Guerber, S. Lee, and U. Moon, “Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency,” Electronics Letters, vol. 46, no. 9, pp. 620-621, 2010.
[29] C. P. Huang, H. W. Ting, and S. J. Chang, “Analysis of Nonideal Behaviors Based on INL/DNL Plots for SAR ADCs,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1804-1817, 2016.
[30] W. Tseng, W. Lee, C. Huang, and P. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, 2016.
[31] B. Sung, D. Jo, I. Jang, D. Lee, Y. You, Y. Lee, H. Park, and S. Ryu, “26.4 A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *