帳號:guest(3.145.188.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴泳達
作者(外文):Lai, Yung-Ta
論文名稱(中文):索引調變多重接取之旋轉編碼
論文名稱(外文):Index Modulation Multiple Access with Rotation Code
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen-Ming
口試委員(中文):吳卓諭
洪樂文
口試委員(外文):Wu, Jwo-Yuh
Hong, Yao-Win
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061539
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:55
中文關鍵詞:索引調變旋轉編碼
外文關鍵詞:Index modulationRotation codeMultiple accessNOMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:346
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在下世代5G 無線通訊系統中,要求更高的頻譜效率、更高的能源效率以及更大量的連結數目。然而,現行的LTE 系統使用的正交頻分多址並不適合使用於下世代5G 無線通訊系統,為了解決這個問題,提出了非正交多重接取技術。然而,大部分現行的碼域非正交多重接取技術都需要指派不同的的編碼簿給不同的使用者,因此傳送的過程會需要和接收端建立連線以及交換控制訊號。因此,這篇論文的動機就是設計出一種可以避免需要碼本指派的碼域非正交多重接取技術。
在這篇論文中,我們提出了索引調變多重接取技術。索引調變多重接取技術是一種使用編碼簿來調變的非正交多重接取技術,而其概念是由索引調變啟發而來。索引調變多重接取技術利用使用的子載波和未使用的子載波來當作索引,這些索引可以夾帶調變位元以外的位元,也就是索引位元。因此,索引調變多重接取技術可以透過調整使用的子載波和未使用的子載波來達到不同的頻譜和能量效率。
為了降低索引調變多重接取技術的位元誤碼率,我們使用了旋轉邊碼技術。模擬果證實了使用旋轉編碼技術對於索引調變多重接取技術的位元誤碼率是有效果的,索引調變多重接取技術的頻譜以及能源效率也的確比正交頻分多址和稀疏碼分多址還好。另外,我們提出不同的接收器像是廣度優先球型解碼器以及深度優先球型解碼器來解決最大似然解碼器的高計算複雜度問題,至於位元誤碼率的上界在本篇論文也有分析。簡言之,這篇論文提出了一個碼域非正交多重接取技術,且和稀疏碼分多址以及正交頻分多址相比有更好的頻譜和能量效率。
In the fifth generation (5G) communication system, massive connectivity of users and devices, higher spectral efficiency (SE), higher energy efficiency (EE), better link reliability
and lower latency are expected. Since the current LTE system that uses the Orthogonal Frequency Division Multiple Access (OFDMA) technique is less efficient to meet these requirements,
one of the most popular solutions for 5G is non-orthogonal multiple access (NOMA) technique. However, most current code-domain NOMA solutions require user-specific codebook assignment, which require grant based transmission. Therefore, the motivation is to design a code-domain NOMA scheme that can facilitate grant free random multiple access.
In this thesis, the “Index Modulation Multiple Access”(IMMA) scheme is proposed. IMMA is a codebook-based NOMA scheme that is inspired from the index modulation (IM) technique. To be specific, IMMA uses the active subcarriers and inactive subcarriers to make
index indices, and the index indices can carry index bits in addition to the modulation signal bits. By adjusting different active subcarrier numbers and modulation types, the IMMA can
reconfig and improve the spectral efficiency (SE) and energy efficiency (EE).
The rotation code is proposed to resolve the inter-user interference (IUI) in contention based multiple access. Furthermore, different decoders such as the breath-first search sphere decoder (BFS-SD) and depth-first search sphere decoder (DFS-SD) are proposed to relieve the high computational complexity of the joint maximum likelihood (JML) decoder, the theoretical average bit error rate (ABER) upper bound is also derived. Our simulation results show that the BER of IMMA is improved with rotation code for better diversity. The SE and EE of IMMA are also better than OFDMA and sparse code multiple access (SCMA). In brief, we design a code-domain NOMA scheme that can facilitate grant free random multiple access, and has better SE, EE than OFDMA and SCMA.
Abstract ii
Contents iv
1 INTRODUCTION 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contribution and Achievement . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 BACKGROUNDS 7
2.1 Contention Based and Non-Contention Based Transmission Schemes . . . . . 7
2.2 Grant Based and Grant Free Transmission Schemes . . . . . . . . . . . . . . 7
2.3 Random and Scheduling Transmission Schemes . . . . . . . . . . . . . . . . 9
2.4 Orthogonal Frequency Division Multiple Access . . . . . . . . . . . . . . . . 11
2.5 Sparse Code Multiple Access (SCMA) . . . . . . . . . . . . . . . . . . . . . 13
2.6 Spatial Modulation (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Rotation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Index Modulation Multiple Access Scheme 20
3.1 IMMA System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 IMMA Joint Maximum Likelihood Receiver . . . . . . . . . . . . . . . . . . 24
3.3 Theoretical Union Bound of Average Bit Error Rate . . . . . . . . . . . . . . 25
3.4 IMMA Sphere Decoding Receiver . . . . . . . . . . . . . . . . . . . . . . . . 26
4 SIMULATION RESULTS 31
4.1 BER Performance of IMMA with Rotation Code . . . . . . . . . . . . . . . 31
4.2 Compare the IMMA BER Performance with Different Active Subcarriers . . 33
4.3 BER Performance for IMMA using Sphere Decoder . . . . . . . . . . . . . . 35
4.4 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Spectral Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Trade-off between SE and EE for IMMA . . . . . . . . . . . . . . . . . . . . 42
4.8 BER Performance Comparison between SCMA and IMMA . . . . . . . . . . 44
4.9 Trade-off between Throughput and EE for IMMA . . . . . . . . . . . . . . . 46
5 CONCLUSIONS 51
[1] Z. Yuan, C. Yan, Y. Yuan, and W. Li, “Blind multiple user detection for grant-free
MUSA without reference signal,” IEEE 86th Vehicular Technology Conference (VTCFall),
pp. 1–5, Sept. 2017.
[2] N. Ye, W. Aihua, L. Xiangming, and W. Liu, “Rate-adaptive multiple access (rama)
for uplink grant-free transmission,” Wireless Communications and Mobile Computing,
Apr. 2018.
[3] Y. C. et al., “SCMA: A promising non-orthogonal multiple access technology for 5G
networks,” Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), pp. 1–6, Sept. 2016.
[4] Nikopour, Hosein, Baligh, and Hadi, “Sparse code multiple access,” IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio Commun. (PIMRC),
Sept. 2013.
[5] A. I. A. website, “1st 5G algorithm innovation competition-ENV1.0-SCMA,”
Web:http://www.innovateasia.com/5g/en/gp2.html, 2015.
[6] K. A. et al., “Uplink Contention Based SCMA for 5G Radio Access,” IEEE Globecom
2014 Workshop, pp. 900–905, Dec. 2014.
[7] J. Boutros and E. Viterbo, “Signal space diversity: - and bandwidth-efficient diversity
technique for the Rayleigh fading channel,” IEEE Trans. Inform. Theory, vol. 44,
pp. 1453–1467, Jul. 1998.
[8] J. G. A. et al., “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, pp. 1065–
1082, Jun. 2014.
[9] L. D. et al., “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities,
and future research trends,” IEEE Commun. Mag., vol. 53, pp. 74–81, Sep. 2015.
[10] S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition
coding strategies: design and experimental evaluation,” IEEE Trans. on Wireless
Commun., vol. 11, pp. 2628–2639, July 2012.
[11] M.Taherzadeh, H.Nikopour, A.Bayesteh, and H.Baligh, “SCMA codebook design,” in
Proc. IEEE 80th Vehicular Technology Conference (VTC Fall), Sept. 2014.
[12] S.-C. Lim, N. Kim, and H. Park, “Uplink SCMA system with multiple antennas,” IEEE
Trans. Veh. Tech., vol. 66, pp. 6982–6992, Aug. 2017.
[13] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for
Internet of Things,” IEEE Vehicular Technology Conference (VTC Spring), May 2016.
[14] B. Chakrapani, T. L. Narasimhan, and A. Chockalingam, “Generalized space-frequency
index modulation: Low-complexity encoding and detection,” Proc. IEEE Globecom
Workshops (GC Wkshps), pp. 1–6, Dec. 2015.
[15] Cal-Braz, J. A., Sampaio-Neto, and Raimundo, “Low-complexity sphere decoding detector
for generalized spatial modulation systems,” IEEE Commun. Lett., vol. 18, pp. 949–
952, Jun. 2014.
[16] M. D. R. et al., “Spatial modulation for generalized MIMO: Challenges, opportunities,
and implementation,” Proc. IEEE, vol. 102, pp. 56–103, Jan. 2014.
[17] E.Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun.
Mag., vol. 54, pp. 168–175, Jul. 2016.
[18] T. L. Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation
in large-scale multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 14,
pp. 3764–3779, Jul. 2015.
[19] T. Datta, H. Eshwaraiah, and A. Chockalingam, “Generalized space and frequency
index modulation,” IEEE Trans. Veh. Tech., vol. 65, pp. 4911–4924, Jul. 2016.
[20] R. Hoshyar, R. Razavi, and M. Al-Imari, “LDS-OFDM an efficient multiple access
technique,” in Proc. 2010 IEEE Veh. Technol. Conf.–Spring), pp. 1–5, May 2010.
[21] J. Bao, Z. Ma, and Z. Ding, “On the design of multiuser codebooks for uplink SCMA
systems,” IEEE Commun. Lett., vol. 20, pp. 1920–1923, Oct. 2016.
[22] E. G. Larsson, “MIMO Detection Methods: How They Work,” IEEE Signal Process.
Mag., vol. 26, pp. 91–95, May 2009.
[23] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,”
IEEE Trans. Signal Processing, vol. 53, pp. 1474–1484, Apr. 2005.
[24] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected complexity,”
IEEE Trans. Signal Processing, vol. 53, pp. 2806–2818, Aug. 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *