帳號:guest(18.223.172.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊家翔
作者(外文):Zhuang, Jia-Xiang
論文名稱(中文):無位置感測同步磁阻發電機系統之開發及其增能控制
論文名稱(外文):DEVELOPMENT OF POSITION SENSORLESS SYNCHRONOUS-RELUCTANCE GENERATOR SYSTEM AND ITS PERFORMANCE ENHANCEMENT CONTROLS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):黃昌圳
陳盛基
李建興
口試委員(外文):Hwang, Chang-Chou
Chen, Seng-Chi
Lee, Chien-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061514
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:176
中文關鍵詞:同步磁阻發電機損失最小化換相調控切換式整流器變頻器聯網能源收集無位置感測
外文關鍵詞:SynRGloss minimizationcommutation tuningswitch-mode rectifierinvertergrid-connectedenergy harvestingsensorless control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:367
  • 評分評分:*****
  • 下載下載:43
  • 收藏收藏:0
本文旨在開發一同步磁阻發電機系統及從事其增能控制研究。首先,在探究同步磁阻電機之關鍵事務後,建構一標準同步磁阻發電機系統,以變頻器供電永磁同步馬達為其原動機。以所提損失最小化技巧決定合宜之換相時刻,獲得較佳發電性能,同時電流切換控制考慮了電機固有之槽齒效應。再藉所提電壓強健控制,使其具良好之電壓響應。此外,進一步構建無位置感測同步磁阻發電機,含弦波與方波高頻注入機構,以及延伸型反電動勢估測機構。同時亦從事無位置感測與標準同步磁阻發電機之性能及轉換效率比較評估。
接著,本文從事所開發同步磁阻發電機之獨立與聯網操控。由於三相六開關切換式整流器之雙向功率能力,所建同步磁阻發電機可直接回送電力至市電,從事雙向送能操控。此外,此切換式整流器亦可形成一三相三線變頻器供電給家庭負載。藉由適當設計之控制器,在非線性負載下,仍具有良好之電壓波形及動態響應特性。
最後,藉由單臂雙向直流至直流介面轉換器,蓄電池可於直流鏈對同步磁阻發電機提供能源支撐。反之,同步磁阻發電機或市電亦可對蓄電池回充。此外,可收集之直流電源,如燃料電池及光伏,亦可插入所建同步磁阻發電機系統,提供能源支撐。所建之同步磁阻發電機系統均以實測結果佐證。

This thesis is mainly concerned with the development of a synchronous reluctance generator (SynRG) and performing its performance enhancement control studies. First, having comprehended the key issues for synchronous reluctance machine, the studied synchronous reluctance generator system is established. An inverter-fed permanent-magnet synchronous motor is employed as its prime mover. The adequate commutation is set by the developed loss minimization controller (LMC), and the winding current switching control is conducted considering the inherent slotting effects. Finally, the robust voltage control scheme is proposed to yield good generated voltage response. In addition, the position sensorless controlled SynRG is further established. The established sensorless control schemes include the sine-wave high frequency injected (HFI) scheme, the square-wave HFI scheme and also the extended back electromotive force (EMF) scheme. And the comparative performance evaluation between the sensorless SynRG and the standard SynRG is made experimentally.
Next, the autonomous and grid-connected operations of the established SynRG are made. Thanks to the bidirectional power capability possessed by the three-phase six-switch (3P6SW) switch-mode rectifier (SMR), the developed SynRG can be directly connected to the utility grid for bidirectional power transfer operations. In addition, the 3P6SW SMR can be operated as a three-phase three-wire (3P3W) load inverter to power the household loads. Through proper control, good voltage waveforms and regulation dynamic response under nonlinear loads are preserved.
Finally, the established SynRG can be supported energy at its DC-link from the battery via a well-designed one-leg bidirectional DC/DC converter. The battery can be charged by the SynRG or the mains successfully. Moreover, the possible harvested DC sources, such as fuel cell and photovoltaic, can be plugged into the SynRG system for providing energy support.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xvii
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xxvii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 INTRODUCTION TO SYNCHRONOUS RELUCTANCE GENERATOR AND SOME MICROGRID RELATED POWER ELECTRONIC TECHNOLOGIES 6
2.1 Introduction 6
2.2 Micro-grid System 6
2.3 Structures of Synchronous Machines 10
2.4 Synchronous Reluctance Machine 12
2.5 Interface Converters 21
CHAPTER 3 PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVEN PRIME MOVER 29
3.1 Introduction 29
3.2 Governing Equations of PMSM 29
3.3 Measurement of Motor Parameters 32
3.4 Some Key Issues of PMSM Drive 35
3.5 Development of a DSP-based Standard PMSM Drive 36
3.6 Controller Scheme 41
3.7 Experimental Evaluation for the Established SPMSM Drive 45
CHAPTER 4 DEVELOPMENT OF A STANDARD SYNCHRONOUS- RELUCTANCE GENERATOR 49
4.1 Introduction 49
4.2 Establishment of Wind Synchronous Reluctance Generator 49
4.3 Practical Modeling of SynRG 55
4.4 Control Schemes 58
4.5 Experimental Evaluation for the Established Standard SynRG 68
CHAPTER 5 POSITION SENSORLESS CONTROL OF SYNCHRONOUS RELUCTANCE GENERATOR 81
5.1 Introduction 81
5.2 Some Existing Position Sensorless Control Methods 81
5.3 Sinusoidal Wave HFI Position Sensorless SynRG 82
5.4 Square Wave HFI Position Sensorless SynRG 90
5.5 Extended-EMF Position Sensorless SynRG 95
5.6 Comparative Evaluation of the Developed High-frequency Injection and Extend-EMF Observer based Sensorless Control SynRGs 100
CHAPTER 6 SYNCHRONOUS-RELUCTANCE GENERATOR BASED MICROGRID AND ITS GRID-CONNECTED OPERATIONS 119
6.1 Introduction 119
6.2 System Configuration 119
6.3 Battery Energy Storage System 119
6.4 Grid-Connected Bidirectional Inverter 132
6.5 Dump Load 145
6.6 Performance Assessment of Whole System 146
CHAPTER 7 CONCLUSIONS 165
REFERENCE 167

[1] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512- 2527, 2011.
[2] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734-4749, 2012.
[3] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[4] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[5] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and H. Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014.
[6] B. Silva, C. L. Moreira, H. Leite, and J. A. P. Lopes, “Control strategies for AC fault ride through in multiterminal HVDC grids,” IEEE Trans. Power Del., vol. 29, no. 1, pp. 395-405, 2014.
[7] K. Strunz, AE. Abbasi, and D. N. Huu, “DC microgrid for wind and solar power integration,” IEEE J. Emerging Sel. Top. Power Electron., vol. 2, no. 1, pp. 115-126, 2014.
[8] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[9] K. W. Hu and C. M. Liaw, “Developed of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp.4973-4985, 2015.
[10] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 3, pp. 81-88, 2016.
[11] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[12] T. Ma, M. H. Cintuglu and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[13] M. Kwon and S. Chol, “Control Scheme for Autonomous and Smooth Mode Switching of Bidirectional DC–DC Converters in a DC Microgrid,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7094-7104, 2018.
[14] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[15] J. D. Park, C. Kalev and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, 2008.
[16] Y. H. A. Rahim, J. E. Fletcher, and N. E. A. M. Hassanain, “Performance analysis of salient-pole self-excited reluctance generators using a simplified model,” IET Renewable Power Generation, vol. 4, no. 3, pp. 253-260, 2010.
[17] B. Singh, R. Niwas, A. Chandra, and R. Miloud, “Voltage control and load leveling of synchronous reluctance generator based DG set,” in Proc. IEEE PIICON, 2014, pp. 1-6.
[18] A. E. Hoffer, R. H. Moncada, B. J. Pavez, J. A. Tapia, and L. Laurila, “A high efficiency control strategy for synchronous reluctance generator including saturation,” in Proc. IEEE ICEM, 2016, pp. 39-45.
[19] M. Alnajjar and D. Gerling, “Synchronous reluctance generator with FPGA control of three-level neutral-point-clamped converter for wind power application,” in Proc. IEEE PEMC, 2016, pp. 498-504.
[20] U E. Doğru, N. G. Özçelik, H. Gedik, M. İmeryüz and L. T. Ergene, “Numerical and experimental comparison of TLA synchronous reluctance motor and induction motor,” in Proc. IEEE PEMC, 2016, pp. 619-624.
[21] S. S. Maroufian and P. Pillay, “Self-excitation criteria of the synchronous reluctance generator in stand-alone mode of operation,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1245- 1253, 2018.
[22] Y. Wang and N. Bianchi, “Investigation of self-excited Synchronous reluctance generators,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1360-1369, 2018.
[23] M. D. Vijay, B. Singh, G. Bhuvaneswari, “Standalone and grid connected operations of a SynRG based WECS with BESS,” in Proc. IEEE IEEMA, 2018, pp. 1-6.
[24] N. Srighakollapu and P. S. Sensarma, “Sensorless maximum power point tracking control in wind energy generation using permanent magnet synchronous generator,” in Proc. IEEE IECON., pp.2225-2230, 2008.
[25] M. Heydari, A. Y. Varjani, M. Mohamadian and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine switch AC/AC converter,” in Proc. IEEE PEDSTC., pp. 5-9, 2010.
[26] İ. Yazici and E. K. Yaylaci, “Maximum power point tracking for the permanent magnet synchronous generator-based WECS by using the discrete-time integral sliding mode controller with a chattering-free reaching law,” IET Power Electron., vol. 10, no. 13, pp. 1751-1758, 2017.
[27] M. Abrelrahem, C. C. Hacklet, Z. Zhang, and R. Kennel, “Robust Predictive Control for Direct-Driven Surface-Mounted Permanent-Magnet Synchronous Generators Without Mechanical Sensors,” IEEE Trans. Energy Convers., vol. 33, no. 1,pp. 179-189, 2018.
[28] K. A. Chinmaya and G. K. Singh, “Performance evaluation of multiphase induction generator in stand-alone and grid-connected wind energy conversion system,” IET Renewable Power Generation, vol. 12, no. 7, pp. 823-831, 2018.
[29] R. Sadeghi, S. M. Madani, M. Ataei, M. R. A. Kashkooli, and S. Ademi, “Super-twisting sliding mode direct power control of brushless doubly fed induction generator,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 9147, 2018.
[30] V. P. Vujičić and M. P. Ćalasan, “Simple sensorless control for high-speed operation of switched reluctance generator,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1325-1335, 2016.
[31] Q. Wang, H. Chen, Y. Dou, and A. Saleem, “Improved current control scheme with online current distribution and DFA regulation for switched reluctance generator,” IET Elec. Power Appl., vol. 12, no. 3, pp. 388-397, 2017.
[32] T. A. S. Barros, P. J. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
[33] T. A. S. Barros, P. J. S. Neto, M. V. Paula, R. R. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind systems,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
[34] T. A. Lipo, “Synchronous reluctance machine- A viable alternative for AC drive,” Electric Machine & Power System, vol. 19, no. 6, pp. 659-671, 1991.
[35] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994.
[36] A. Vagati, M. Pastorelli, G. Francheschini and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998.
[37] R. R. Moghaddam, F. Magnussen and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for high torque density,” in Proc. IET PEMD, 2012, pp. 1-4.
[38] N. Bianchi, M. Degano and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, 2015.
[39] C. M. Spargo, B. C. Mecrow, J. D. Widmer and C. Morton, “Application of fractional-slot concentrated windings to synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1446-1455, 2015.
[40] F. N. Jurca, M. Ruba and C. Marţiş, “Design and control of synchronous reluctances motors for electric traction vehicle,” in Proc. IEEE SPEEDAM, 2016, pp. 1144-1148.
[41] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, 2016.
[42] P. Niazi and A. T Hamid, “On-line parameter estimation of permanent magnet assisted synchronous reluctance motor drives,” in Proc. IEEE IEMD, 2005, pp. 1031-1036.
[43] S. Yamamoto, K. Tomishige and T. Ara, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47-56, 2007.
[44] J. B. Im, W. Kim, K. Kim, C.-S. Jin, J. H. Choi and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2803-2806, 2009.
[45] K. Yahia, D. Matos, J. O. Estima and A. J. M. Cardoso, “Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses,” in Proc. IEEE SPEEDAM, 2014, pp. 601-606.
[46] M. N. Ibrahim, P. Sergeant and E. M. Rashad, “Relevance of Including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151-160, 2017.
[47] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[48] D. D. Rù, M. Morandin, S. Bolognani and M. Castiello, “Model predictive hysteresis current control for wide speed operation of a synchronous reluctance machine drive,” in Proc. IEEE IECON, 2016, pp. 2845-2850.
[49] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, no. 2, pp. 1323-1325, 2012.
[50] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[51] R. Errouissi, M. Ouhrouche, W. H. Chen and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012.
[52] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013.
[53] S. Wiedemann and A. Dziechciarz, “Comparative evaluation of DTC strategies for the synchronous reluctance machine,” in Proc. IEEE EVER, 2015, pp. 1-5.
[54] Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[55] S. Bolognani, L, Peretti and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011.
[56] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015.
[57] S. M. Ferdous, P. Garcia, M. A. M. Oninda and M. A. Hoque, “MTPA and field weakening control of synchronous reluctance motor,” in Proc. IEEE ICECE, 2016, pp. 598-601.
[58] H. Kamiyama, Y. Inoue, S. Morimoto and M. Sanada, “Mathematical model of PMSM and SynRM under maximum torque per ampere condition in a stator flux-linkage synchronous frame,” in Proc. IEEE ICEMS, 2016, pp. 1-6.
[59] T. Lubin, H. Razik and A. Rezzoug, “Magnetic saturation effects on the control of a synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 356-362, 2002.
[60] H. F. Hofmann, S. R. Sanders and A. EL-Antably, “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004.
[61] H. A. Zarchi, J. Soltani, G. R. A. Markadeh, M. Fazeli and A. K. Sichani, “Variable structure direct torque control of encoderless synchronous reluctance motor drives with maximized efficiency,” in Proc. IEEE ISIE, 2010, pp. 1529-1535.
[62] S. Kim, S. K. Sul, K. Ide and S. Morimoto, “Maximum efficiency operation of synchronous reluctance machine using signal injection,” in Proc. IEEE ECCE, 2010, pp. 2000-2004.
[63] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011.
[64] Z. Qu and M. Hinkkanen, “Loss-minimizing control of synchronous reluctance motors - a review,” in Proc. IEEE ICIT, 2013, pp. 350-355.
[65] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013.
[66] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[67] R. Lai, F. Wang, R. Burgos, D. Boroyevic, D. Jiang, and D. Jhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, 2009.
[68] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[69] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems- part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[70] A. R. Izadinia and H. R. Karshenas, “Optimized current control of Vienna rectifier using finite control set model predictive control,” in Proc. IEEE PEDSTC., pp. 596-601, 2016.
[71] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[72] B. Yin, R. Oruganti, S. K. Panda and A. K. S. Bhat, “A simple single-input-single-output (SISO) model for a three-phase PWM rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 620-631, 2009.
[73] S. C. Shin, H. J. Lee, Y. H. Kim, J. H. Lee, and C. Y. Won, “Transient response improvement at startup of a three-phase AC/DC converter for a DC distribution system in commercial facilities,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6742-6753, 2014.
[74] J. Lu, S. Golestan, M. Savaghebi, J. C. Vasquez, J. M. Guerrero and A. Marzabal, “An enhanced state observer for DC-Link voltage control of three-phase AC/DC converters,” IEEE Trans. Power. Electron., vol. 33, no. 2, pp. 936-942, 2018.
[75] T. Tuovinen, M. Hinkkanen, L. Harnefors and J. Luomi, “Comparison of a reduced-order observer and a full-order observer for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1959-1967, 2012.
[76] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 181-189, 2014.
[77] D. -Q. Nguyen, L. Loron and K. Dakhouche, “High-speed sensorless control of a synchronous reluctance motor based on an extended kalman filter,” in Proc. IEEE EPE ECCE, 2015, pp. 1-10.
[78] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation,” in Proc. IEEE IECON, 2003, vol. 3, pp. 2150-2155.
[79] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[80] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma and S. Kato, “Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF,” in Proc. IEEE IECON, 2011, pp. 1971-1976.
[81] S. Kondo, Y. Sato, T. Goto, M. Tomita, M. Hasegawa, S. Doki and S. Kato, “Position and velocity sensorless control for synchronous reluctance motor at low speeds and under loaded conditions using high-frequency extended EMF observer and heterodyne detection,” in Proc. IEEE ICEM, 2014, pp. 857-863.
[82] A. Yousefi-Talouki and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motor drives in a wide speed range including standstill,” in Proc. IEEE ICEM, 2016, pp. 1167-1173.
[83] S. J. Kang, J. M. Kim and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, 1999.
[84] J. I. Ha, S. J. Kang and S. K. Sul, “Position-controlled synchronous reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1393-1398, 1999.
[85] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[86] J. H. Jang, J. I. Ha, M. Ohto, K. Idle and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[87] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[88] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[89] S. Kim and S. K. Sul, “Sensorless control of AC motor - Where are we now?,” in Proc. IEEE ICEMS, 2011, pp. 1-6.
[90] S. C. Agarlita, I. Boldea and F. Blaabjerg, “High-frequency injection-assisted “active-flux”- based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1931-1939, 2012.
[91] W. T. Villet, M. J. Kamper, P. Landsmann and R. Kennel, “Evaluation of a simplified high frequency injection position sensorless control method for reluctance synchronous machine drives,” in Proc. IET PEMD, 2012, pp. 1-6.
[92] Á. Oliveira, D. Cavaleiro, R. Branco, H. Hadla and S. Cruz, “An encoderless high-performance synchronous reluctance motor drive,” in Proc. IEEE ICIT, 2015, pp. 2048-2055.
[93] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[94] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[95] Y. Zhao, Z. Zhang, C. Ma, W. Qiao and Liyan Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8.
[96] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[97] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim and R. S. Yu, “Suppression of injection voltage disturbance for high- frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
[98] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005.
[99] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[100] R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., pp. 1-6, 2011.
[101] M. Farrokhabadi, S. König, C. A. Cañizares, K. Bhattacharya and T. Leibfried, “Battery energy storage system models for microgrid stability analysis and dynamic simulation,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2301-2312, 2018.
[102] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery, fuel-cell- capacitor, and fuel-cell-capacity-ultracapacitor vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008.
[103] Abedini ans A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON., pp. 3347-3351, 2008.
[104] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
[105] G. O. Suvire and P. E. Mercado, “Active power control of a flywheel energy storage system for wind energy applications,” IET Renewable Power Generation, vol. 6, no.1, pp. 9-16, 2012.
[106] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, 2013, pp. 119-125.
[107] M. Cacciato, F. Caricchi, F. Giuhlii, and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, vol. 2, no. 2, pp.1127-1133, 2004.
[108] H. C. Chang, and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[109] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray, and Z. Turgut, “Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4812-4815, 2009.
[110] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 4493-4504, 2016.
[111] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[112] M. A. Khan, I. Husain, and Y. Sozer, “A bidirectional DC-DC converter with overlapping input and output voltage ranges and vehicle to grid energy transfer capability,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 507-516, 2014.
[113] I. Federico, E. Jose, and F. Luis, “Master–slave DC droop control for paralleling auxiliary DC/DC converters in electric bus applications,” IET Power Electron., vol. 10, no. 10, pp. 1156-1164, 2017.
[114] E. Babaei, Z. Saadatizadeh, and C. Cecati, “High step-up high step-down bidirectional DC/DC converter,” IET Power Electron., vol. 10, no. 12, pp. 1556-1571, 2017.
[115] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple and analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[116] Y. W. Li, D. M. Vilathgamuwa, and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microogrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
[117] K. Selvajyothi and P. A. Janakiramann, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045- 1057, 2010.
[118] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp. 316-321.
[119] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá, and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
[120] R. Carballo, R. Nunez, V. Kurtz, and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrid based on renewable energy sources,” IEEE Trans. Ltin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
[121] B. Sahan, S. V. Araujo, C. Noding, and P. Zacharias, “Comparative evaluation of three phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[122] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *