|
[1] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512- 2527, 2011. [2] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734-4749, 2012. [3] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013. [4] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014. [5] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and H. Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014. [6] B. Silva, C. L. Moreira, H. Leite, and J. A. P. Lopes, “Control strategies for AC fault ride through in multiterminal HVDC grids,” IEEE Trans. Power Del., vol. 29, no. 1, pp. 395-405, 2014. [7] K. Strunz, AE. Abbasi, and D. N. Huu, “DC microgrid for wind and solar power integration,” IEEE J. Emerging Sel. Top. Power Electron., vol. 2, no. 1, pp. 115-126, 2014. [8] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015. [9] K. W. Hu and C. M. Liaw, “Developed of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp.4973-4985, 2015. [10] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 3, pp. 81-88, 2016. [11] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016. [12] T. Ma, M. H. Cintuglu and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017. [13] M. Kwon and S. Chol, “Control Scheme for Autonomous and Smooth Mode Switching of Bidirectional DC–DC Converters in a DC Microgrid,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7094-7104, 2018. [14] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002. [15] J. D. Park, C. Kalev and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, 2008. [16] Y. H. A. Rahim, J. E. Fletcher, and N. E. A. M. Hassanain, “Performance analysis of salient-pole self-excited reluctance generators using a simplified model,” IET Renewable Power Generation, vol. 4, no. 3, pp. 253-260, 2010. [17] B. Singh, R. Niwas, A. Chandra, and R. Miloud, “Voltage control and load leveling of synchronous reluctance generator based DG set,” in Proc. IEEE PIICON, 2014, pp. 1-6. [18] A. E. Hoffer, R. H. Moncada, B. J. Pavez, J. A. Tapia, and L. Laurila, “A high efficiency control strategy for synchronous reluctance generator including saturation,” in Proc. IEEE ICEM, 2016, pp. 39-45. [19] M. Alnajjar and D. Gerling, “Synchronous reluctance generator with FPGA control of three-level neutral-point-clamped converter for wind power application,” in Proc. IEEE PEMC, 2016, pp. 498-504. [20] U E. Doğru, N. G. Özçelik, H. Gedik, M. İmeryüz and L. T. Ergene, “Numerical and experimental comparison of TLA synchronous reluctance motor and induction motor,” in Proc. IEEE PEMC, 2016, pp. 619-624. [21] S. S. Maroufian and P. Pillay, “Self-excitation criteria of the synchronous reluctance generator in stand-alone mode of operation,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1245- 1253, 2018. [22] Y. Wang and N. Bianchi, “Investigation of self-excited Synchronous reluctance generators,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1360-1369, 2018. [23] M. D. Vijay, B. Singh, G. Bhuvaneswari, “Standalone and grid connected operations of a SynRG based WECS with BESS,” in Proc. IEEE IEEMA, 2018, pp. 1-6. [24] N. Srighakollapu and P. S. Sensarma, “Sensorless maximum power point tracking control in wind energy generation using permanent magnet synchronous generator,” in Proc. IEEE IECON., pp.2225-2230, 2008. [25] M. Heydari, A. Y. Varjani, M. Mohamadian and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine switch AC/AC converter,” in Proc. IEEE PEDSTC., pp. 5-9, 2010. [26] İ. Yazici and E. K. Yaylaci, “Maximum power point tracking for the permanent magnet synchronous generator-based WECS by using the discrete-time integral sliding mode controller with a chattering-free reaching law,” IET Power Electron., vol. 10, no. 13, pp. 1751-1758, 2017. [27] M. Abrelrahem, C. C. Hacklet, Z. Zhang, and R. Kennel, “Robust Predictive Control for Direct-Driven Surface-Mounted Permanent-Magnet Synchronous Generators Without Mechanical Sensors,” IEEE Trans. Energy Convers., vol. 33, no. 1,pp. 179-189, 2018. [28] K. A. Chinmaya and G. K. Singh, “Performance evaluation of multiphase induction generator in stand-alone and grid-connected wind energy conversion system,” IET Renewable Power Generation, vol. 12, no. 7, pp. 823-831, 2018. [29] R. Sadeghi, S. M. Madani, M. Ataei, M. R. A. Kashkooli, and S. Ademi, “Super-twisting sliding mode direct power control of brushless doubly fed induction generator,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 9147, 2018. [30] V. P. Vujičić and M. P. Ćalasan, “Simple sensorless control for high-speed operation of switched reluctance generator,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1325-1335, 2016. [31] Q. Wang, H. Chen, Y. Dou, and A. Saleem, “Improved current control scheme with online current distribution and DFA regulation for switched reluctance generator,” IET Elec. Power Appl., vol. 12, no. 3, pp. 388-397, 2017. [32] T. A. S. Barros, P. J. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017. [33] T. A. S. Barros, P. J. S. Neto, M. V. Paula, R. R. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind systems,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018. [34] T. A. Lipo, “Synchronous reluctance machine- A viable alternative for AC drive,” Electric Machine & Power System, vol. 19, no. 6, pp. 659-671, 1991. [35] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994. [36] A. Vagati, M. Pastorelli, G. Francheschini and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998. [37] R. R. Moghaddam, F. Magnussen and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for high torque density,” in Proc. IET PEMD, 2012, pp. 1-4. [38] N. Bianchi, M. Degano and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, 2015. [39] C. M. Spargo, B. C. Mecrow, J. D. Widmer and C. Morton, “Application of fractional-slot concentrated windings to synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1446-1455, 2015. [40] F. N. Jurca, M. Ruba and C. Marţiş, “Design and control of synchronous reluctances motors for electric traction vehicle,” in Proc. IEEE SPEEDAM, 2016, pp. 1144-1148. [41] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, 2016. [42] P. Niazi and A. T Hamid, “On-line parameter estimation of permanent magnet assisted synchronous reluctance motor drives,” in Proc. IEEE IEMD, 2005, pp. 1031-1036. [43] S. Yamamoto, K. Tomishige and T. Ara, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47-56, 2007. [44] J. B. Im, W. Kim, K. Kim, C.-S. Jin, J. H. Choi and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2803-2806, 2009. [45] K. Yahia, D. Matos, J. O. Estima and A. J. M. Cardoso, “Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses,” in Proc. IEEE SPEEDAM, 2014, pp. 601-606. [46] M. N. Ibrahim, P. Sergeant and E. M. Rashad, “Relevance of Including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151-160, 2017. [47] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [48] D. D. Rù, M. Morandin, S. Bolognani and M. Castiello, “Model predictive hysteresis current control for wide speed operation of a synchronous reluctance machine drive,” in Proc. IEEE IECON, 2016, pp. 2845-2850. [49] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, no. 2, pp. 1323-1325, 2012. [50] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009. [51] R. Errouissi, M. Ouhrouche, W. H. Chen and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012. [52] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013. [53] S. Wiedemann and A. Dziechciarz, “Comparative evaluation of DTC strategies for the synchronous reluctance machine,” in Proc. IEEE EVER, 2015, pp. 1-5. [54] Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016. [55] S. Bolognani, L, Peretti and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011. [56] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015. [57] S. M. Ferdous, P. Garcia, M. A. M. Oninda and M. A. Hoque, “MTPA and field weakening control of synchronous reluctance motor,” in Proc. IEEE ICECE, 2016, pp. 598-601. [58] H. Kamiyama, Y. Inoue, S. Morimoto and M. Sanada, “Mathematical model of PMSM and SynRM under maximum torque per ampere condition in a stator flux-linkage synchronous frame,” in Proc. IEEE ICEMS, 2016, pp. 1-6. [59] T. Lubin, H. Razik and A. Rezzoug, “Magnetic saturation effects on the control of a synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 356-362, 2002. [60] H. F. Hofmann, S. R. Sanders and A. EL-Antably, “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004. [61] H. A. Zarchi, J. Soltani, G. R. A. Markadeh, M. Fazeli and A. K. Sichani, “Variable structure direct torque control of encoderless synchronous reluctance motor drives with maximized efficiency,” in Proc. IEEE ISIE, 2010, pp. 1529-1535. [62] S. Kim, S. K. Sul, K. Ide and S. Morimoto, “Maximum efficiency operation of synchronous reluctance machine using signal injection,” in Proc. IEEE ECCE, 2010, pp. 2000-2004. [63] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011. [64] Z. Qu and M. Hinkkanen, “Loss-minimizing control of synchronous reluctance motors - a review,” in Proc. IEEE ICIT, 2013, pp. 350-355. [65] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013. [66] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [67] R. Lai, F. Wang, R. Burgos, D. Boroyevic, D. Jiang, and D. Jhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, 2009. [68] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [69] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems- part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [70] A. R. Izadinia and H. R. Karshenas, “Optimized current control of Vienna rectifier using finite control set model predictive control,” in Proc. IEEE PEDSTC., pp. 596-601, 2016. [71] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [72] B. Yin, R. Oruganti, S. K. Panda and A. K. S. Bhat, “A simple single-input-single-output (SISO) model for a three-phase PWM rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 620-631, 2009. [73] S. C. Shin, H. J. Lee, Y. H. Kim, J. H. Lee, and C. Y. Won, “Transient response improvement at startup of a three-phase AC/DC converter for a DC distribution system in commercial facilities,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6742-6753, 2014. [74] J. Lu, S. Golestan, M. Savaghebi, J. C. Vasquez, J. M. Guerrero and A. Marzabal, “An enhanced state observer for DC-Link voltage control of three-phase AC/DC converters,” IEEE Trans. Power. Electron., vol. 33, no. 2, pp. 936-942, 2018. [75] T. Tuovinen, M. Hinkkanen, L. Harnefors and J. Luomi, “Comparison of a reduced-order observer and a full-order observer for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1959-1967, 2012. [76] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 181-189, 2014. [77] D. -Q. Nguyen, L. Loron and K. Dakhouche, “High-speed sensorless control of a synchronous reluctance motor based on an extended kalman filter,” in Proc. IEEE EPE ECCE, 2015, pp. 1-10. [78] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation,” in Proc. IEEE IECON, 2003, vol. 3, pp. 2150-2155. [79] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006. [80] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma and S. Kato, “Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF,” in Proc. IEEE IECON, 2011, pp. 1971-1976. [81] S. Kondo, Y. Sato, T. Goto, M. Tomita, M. Hasegawa, S. Doki and S. Kato, “Position and velocity sensorless control for synchronous reluctance motor at low speeds and under loaded conditions using high-frequency extended EMF observer and heterodyne detection,” in Proc. IEEE ICEM, 2014, pp. 857-863. [82] A. Yousefi-Talouki and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motor drives in a wide speed range including standstill,” in Proc. IEEE ICEM, 2016, pp. 1167-1173. [83] S. J. Kang, J. M. Kim and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, 1999. [84] J. I. Ha, S. J. Kang and S. K. Sul, “Position-controlled synchronous reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1393-1398, 1999. [85] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002. [86] J. H. Jang, J. I. Ha, M. Ohto, K. Idle and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004. [87] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005. [88] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009. [89] S. Kim and S. K. Sul, “Sensorless control of AC motor - Where are we now?,” in Proc. IEEE ICEMS, 2011, pp. 1-6. [90] S. C. Agarlita, I. Boldea and F. Blaabjerg, “High-frequency injection-assisted “active-flux”- based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1931-1939, 2012. [91] W. T. Villet, M. J. Kamper, P. Landsmann and R. Kennel, “Evaluation of a simplified high frequency injection position sensorless control method for reluctance synchronous machine drives,” in Proc. IET PEMD, 2012, pp. 1-6. [92] Á. Oliveira, D. Cavaleiro, R. Branco, H. Hadla and S. Cruz, “An encoderless high-performance synchronous reluctance motor drive,” in Proc. IEEE ICIT, 2015, pp. 2048-2055. [93] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511. [94] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011. [95] Y. Zhao, Z. Zhang, C. Ma, W. Qiao and Liyan Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8. [96] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014. [97] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim and R. S. Yu, “Suppression of injection voltage disturbance for high- frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016. [98] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005. [99] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011. [100] R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., pp. 1-6, 2011. [101] M. Farrokhabadi, S. König, C. A. Cañizares, K. Bhattacharya and T. Leibfried, “Battery energy storage system models for microgrid stability analysis and dynamic simulation,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 2301-2312, 2018. [102] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery, fuel-cell- capacitor, and fuel-cell-capacity-ultracapacitor vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008. [103] Abedini ans A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON., pp. 3347-3351, 2008. [104] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007. [105] G. O. Suvire and P. E. Mercado, “Active power control of a flywheel energy storage system for wind energy applications,” IET Renewable Power Generation, vol. 6, no.1, pp. 9-16, 2012. [106] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, 2013, pp. 119-125. [107] M. Cacciato, F. Caricchi, F. Giuhlii, and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, vol. 2, no. 2, pp.1127-1133, 2004. [108] H. C. Chang, and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. [109] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray, and Z. Turgut, “Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4812-4815, 2009. [110] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 4493-4504, 2016. [111] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011. [112] M. A. Khan, I. Husain, and Y. Sozer, “A bidirectional DC-DC converter with overlapping input and output voltage ranges and vehicle to grid energy transfer capability,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 507-516, 2014. [113] I. Federico, E. Jose, and F. Luis, “Master–slave DC droop control for paralleling auxiliary DC/DC converters in electric bus applications,” IET Power Electron., vol. 10, no. 10, pp. 1156-1164, 2017. [114] E. Babaei, Z. Saadatizadeh, and C. Cecati, “High step-up high step-down bidirectional DC/DC converter,” IET Power Electron., vol. 10, no. 12, pp. 1556-1571, 2017. [115] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple and analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [116] Y. W. Li, D. M. Vilathgamuwa, and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microogrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006. [117] K. Selvajyothi and P. A. Janakiramann, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045- 1057, 2010. [118] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp. 316-321. [119] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá, and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011. [120] R. Carballo, R. Nunez, V. Kurtz, and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrid based on renewable energy sources,” IEEE Trans. Ltin Ameri., vol. 11, no. 1, pp. 112-118, 2013. [121] B. Sahan, S. V. Araujo, C. Noding, and P. Zacharias, “Comparative evaluation of three phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011. [122] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
|