帳號:guest(18.117.78.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柔文
作者(外文):Chen, Jou-Wen
論文名稱(中文):介電質放電型臭氧產生器負載建模與諧振電源換流器研製
論文名稱(外文):Design and Implementation of Resonant Inverter and Load Modeling for DBD Ozone Generator
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):陳科宏
余國瑞
謝耀慶
口試委員(外文):Chen, Ke-Horng
Yu, Gwo-Ruey
Hsieh, Yao-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:DBD型臭氧產生器圖解法臭氧產生器負載建模LC諧振電路諧振換流器
外文關鍵詞:DBD-type ozone generatorArea-graph methodOzone generator modelingLC resonant circuitResonant inverter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:779
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究所研製之臭氧產生器系統,主要用於工業廢氣與廢水處理,以及作為半導體製程中原子層沉積(atomic layer deposition, ALD)與化學氣相沉積(chemical vapor deposition, CVD)之前驅物。
本研究根據臭氧產生器之放電電流與電壓波形,提出非線性模型之面積圖解法計算與推導其對應參數,並考量氣體反應腔體之等效模型,設計與製作一高壓高頻電源供應器。此電源供應器為換流器,所使用電路架構為全橋式LC並聯諧振換流器,使功率開關之操作頻率高於諧振頻率,可達到零電壓切換,以降低開關切換損失,及利用功率開關變頻操作,使輸出電壓可以依照使用者需求,穩壓於3 kV至4.5 kV,此外因使用諧振電路,輸出電壓為似弦波可減少電磁干擾。
本論文主要貢獻包含:(1)將高壓交流弦波施加至氣體反應腔體,並測量其放電電流與電壓波形,並以面積圖解法分析,得到介電質放電型氣體反應腔體之非線性等效模型。此方法可以免去外加被動元件測量利薩如圖,直接量測波形以降低外加被動元件造成之誤差。(2)針對本研究提出之電路架構,考量腔體等效模型,提出諧振槽元件參數的設計參考。(3)本研究實現一台1.5 kW,輸入電壓為300 ±30 V,交流輸出電壓為3 k ~ 4.5 kV及切換頻率35 k ~ 45 kHz之高壓直流/交流換流器,可驅動介電質放電型氣體放電腔體,產生臭氧。最後經由模擬與實驗結果,驗證本系統之可行性。
The designed ozone generator system in this research is mainly used for industrial waste gas and waste water treatment, and as a precursor of atomic layer deposition (ALD) and chemical vapor deposition (CVD) in semiconductor manufacturing.
In this thesis, a nonlinear model of gas reaction chamber and its parameters are derived and calculated with the proposed area-graph method, based on the discharge current and voltage waveforms of the ozone generator. Considering the equivalent model of gas reaction chamber, we design and implement a high-voltage high-frequency power supply. The power supply is an inverter with a LC parallel-resonant tank, in which the operating frequency of the power switches is higher than the resonant frequency, so that zero voltage switching can be achieved to reduce switching loss. And the operating frequency of the power switches is variable, so that the output voltage can be regulated by users from 3 kV to 4.5 kV. Its output voltage is a sinusoidal like waveform to reduce electromagnetic interference.
The main contributions of this thesis include: (1) The discharge current and voltage waveforms measured from the chamber of ozone generator can be graphically analyzed to obtain a nonlinear equivalent model of the DBD-type gas reaction chamber. The proposed area-graph method uses the waveforms directly, so that it can eliminate the need of external passive components to measure a Lissajous figure and reduce possible errors caused by the components. (2) According to the circuit structure proposed in this thesis, the equivalent model of the DBD-type gas reaction chamber is considered, and the design reference of the parameters of the resonant tank components is proposed. (3) This research realizes a 1.5 kW high-voltage dc/ac inverter with dc input voltage of 300 ± 30 V, ac output voltage of 3 k ~ 4.5 kV and switching frequency of 30 k ~ 45 kHz, which can drive dielectric barrier discharge gas reaction chamber and generate ozone effectively. Finally, feasibility of the high-voltage high-frequency power supply has been verified by both simulated and experimental results.
總目錄
摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 臭氧產生方式回顧 2
1-2-1 紫外線輻射法[2] 2
1-2-2 電解法[3] 3
1-2-3 高壓放電法[4] 4
1-3 臭氧產生器工作原理 5
1-4 高壓介電質放電型臭氧產生系統架構 6
1-5 換流器架構回顧 7
1-5-1 LC串聯型諧振換流器[8] 9
1-5-2 LC並聯型諧振電路[8] 9
1-6 論文架構 11
第二章 臭氧產生器等效模型 12
2-1 DBD型等效模型之利薩如圖(Lissajous plot)法回顧 12
2-1-1 非線性模型 12
2-1-2 線性模型 15
2-2 非線性模型之面積圖解法(Area-graph Method) 16
第三章 高壓高頻諧振式電源供應器設計 20
3-1 方波訊號產生器 21
3-2 臭氧產生器等效負載 21
3-3 諧振槽設計 22
第四章 周邊電路設計 29
4-1 輔助電源 29
4-2 電壓箝位電路 30
4-3 電壓偵測回授電路 31
4-4 諧振電感電流保護電路 33
4-5 過壓/過流硬體保護電路 33
4-6 開關隔離驅動電路 34
第五章 控制韌體規劃 37
5-1 韌體系統架構 37
5-2 微控制器RX62T介紹 38
5-3 主程式流程規劃 41
5-4 類比/數位轉換中斷程式流程規劃 42
第六章 電路製作與實測驗證 45
6-1 電氣規格與元件選擇 45
6-2 實務考量 47
6-2-1 電感值變化 47
6-2-2 軟啟動 49
6-2-3 LOC110隔離降壓回授 50
6-3 模擬與實測驗證 52
6-3-1 系統模擬 53
6-3-2 零電壓切換 56
6-3-3 暫態 56
6-3-4 輕載 57
6-3-5 半載 58
6-3-6 滿載 60
6-4 損耗分析 61
第七章 結論與未來研究方向 66
7-1 結論 66
7-2 未來研究 66
參考資料 68

[1] G. X. Tan and Y. P. Chen, “Development of the ozone studies,” Journal of Shanghai university, vol. 10, no. 5, pp. 537-542, Oct. 2004.
[2] P. Fabian and M. Dameris, Ozone in the Atmosphere: basic principles, natural and human impacts, 2014.
[3] J. M. Wei and N. S. Chi, “Preparing ozone by electrolysis of water,” Journal of Nanchang university, vol. 18, no. 4, pp. 419-423, Dec. 1994.
[4] M. Abdel-Salam, A. Hashem, A. Yehia, A. Mizuno, A. Turky, and A. Gabr, “Characteristics of corona and silent discharges as influenced by geometry of the discharge reactor,” J. Phys. D: Appl. Phys., vol. 36, no. 3, pp. 252-260, Jan. 2003.
[5] 童保舜,電漿驅動器臭氧生成之研究,國立中央大學環境工程研究所碩士論文,2012年6月。
[6] A. Garamoon, F. Elakshar, A. Nossair, and E. Kotp, “Experimental study of ozone synthesis,” Plasma Sources Sci. Technol., vol. 11, no. 3, pp. 254-259, May 2002.
[7] S. Park, J. Moon, S. Lee, and S. Shin, “Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator,” J. Electrostatics, vol. 64, pp. 255-262, 2006.
[8] M. K. Kazimierczuk and D. Czarkowski, Resonant power converters, Second Edition, 2011.
[9] J. M. Alonso, J. Garcia, A. J. Calleja, J. Ribas, and J. Cardesin, “Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1364-1372, 2005.
[10] K. Oleg, M. Sergey and M. Nakaoka, “Frequency characteristics analysis and switching power supply designing for dielectric barrier discharge type load,” VIII IEEE International Power Electronics Congress, pp. 222-227, Oct. 2002.
[11] W. Meesrisuk and A. Jangwanitlert, “Ozone generator for prolonging fruits using a full-bridge inverter with high frequency transformer,” IEEE International Conference on Electrical Machines and Systems, pp. 1252-1256, Oct. 2015.
[12] Z. Salam, M. Facta, M. Amjad, and Z. Buntat, “Design and implementation of a low cost high yield dielectric barrier discharge ozone generator based on the single switch resonant converter,” IET Power Electron., vol. 6, no. 8, pp. 1583-1591, 2013.
[13] P. Hothongkham, S. Kongkachat and N. Thodsaporn, “Analysis and comparison study of PWM and phase-shifted PWM full-bridge inverter fed high-voltage high-frequency ozone generator,” Proc. IEEE 9th Int. Conf. Power Electron. Drive Syst. (PEDS), pp. 776-781, Dec. 2011.
[14] S. Boonduang and P. Limsuwan, “Effect of generating heat on ozone generation in dielectric cylinder-cylinder DBD ozone generator,” Energy and Power Engineering, vol. 5, no. 9, pp. 523-527, 2013.
[15] J. M. Alonso, M. Valds, A. J. Calleja, and J. Losada, “High frequency testing and modeling of silent discharge ozone generators,” Ozone Sci. Eng., vol. 25, no. 5, pp. 363-376, Sep. 2003.
[16] R. G. Haverkamp, B. B. Miller and K. W. Free, “Ozone production in high frequency dielectric barrier discharge generator,” The Journal of the International Ozone Association, vol. 24, pp.321-328, Jun. 2002.
[17] M. Amjad and Z. Salam, “Analysis, design, and implementation of multiple parallel ozone chambers for high flow rate,” IEEE Transactions on Industrial electronics, vol. 61, no. 2, Feb. 2014.
[18] X. Tang, Y. Yu, Z. Meng, and S. Li, “Study on an engineering design method for power supply of DBD type ozone generator,” Proc. Chin. Autom. Congr. (CAC), pp. 713-717, Nov. 2013.
[19] M. Ponce, J. Aguilar, J. Fernandez, E. Beutelspacher, J. M. calderon, and C. cortes, “Linear and non linear models for ozone generators considering electrodes losses,” IEEE 35th Annual Power Electronics Specialists Conference, pp. 810-814, 20-25 June 2004.
[20] Mean Well, LRS-35 Series Datasheet, 2017.
[21] Mean Well, DCW03 Series Datasheet, 2018.
[22] Mean Well, SCW05 Series Datasheet, 2018.
[23] IXYS Integrated Circuits, LOC110 Datasheet, 2016.
[24] Allegro, ACS712 Datasheet, 2006.
[25] TOSHIBA, TLP-2367 Datasheet, 2017.
[26] UNITRODE, UC3710 Datasheet, 2017.
[27] Renesas, RX62T Group Datasheet, Rev. 1.10, Apr. 2011.
[28] Rohm, SCT2120AF Datasheet, Rev. E, 2017
[29] 林柏言,電感之種類與其特性分析,立錡科技,2017。
[30] Magnetics Company, Ferrite cores, 2017.
[31] Chang Sung Corporation(CSC), Magnetic powder cores, ver.14.
[32] TDK, Material characteristics, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *