帳號:guest(3.137.216.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃任綜
作者(外文):Huang, Ren-Zong.
論文名稱(中文):遠距電漿電源產生器研製
論文名稱(外文):Design and Implementation of Remote Plasma Source Generator
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu.
口試委員(中文):廖聰明
陳裕愷
陳鴻祺
口試委員(外文):Liaw, Chang-Ming.
Chen, Yu-Kai.
Chen, Hung-Chi .
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061507
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:電漿感應耦合電漿變壓器耦合電漿諧振零電壓切換
外文關鍵詞:PlasmaInductively coupled plasmaTransformer coupled plasmaResonantZero voltage switching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電漿廣泛應用於各個領域中,如半導體產業、光電產業、生醫材料產業等。而電漿系統中,產生電漿之電漿源為系統之關鍵,電源種類分為直流與交流,常用為交流電源系統。依其放電型式可分為電感耦合式電漿、電容耦合式電漿、介電質放電電漿等等。本研究研製一電漿電源產生器,可應用於半導體製程清潔之電漿系統。此系統採用電感耦合式(Inductively Coupled Plasma, ICP)又稱變壓器耦合式電漿(Transformer Coupled Plasm, TCP),此種型式為半導體製造最常使用之高密度電漿系統,以達到較佳的清潔效果。本研究著重於直流-交流換流器之研製,所使用電路架構為全橋並聯諧振換流器電路,其操作頻率範圍為300 kHz至400 kHz。將功率開關頻率操作高於諧振頻率,藉由諧振特性使開關達到軟切換,降低切換損失;此外,輸出為弦波電壓以減少電磁干擾。本研究採用數位控制可提升系統自由度與可靠度,此外藉由微控制器做軟體保護或利用保護電路達到硬體保護,當系統於運作中發生異常時,可即時保護系統,使電路系統免於毀損。最後本研究實作一輸入400 VDC,輸出400 Vp,額定5 kW之諧振換流器,並經由實測結果驗證本研究所提出之理論與控制策略,以及換流器操作之可行性。
關鍵字:電漿、感應耦合電漿、變壓器耦合式電漿、諧振、零電壓切換。
Plasma is widely used in various industries, such as semiconductor industry, optoelectronics industry, and biomedical material industry. In the plasma system, the plasma source is the key component and it is divided into DC or AC source. According to plasma discharge type, it can be divided into inductively coupled plasma, capacitively coupled plasma, dielectric discharge plasma and so on.
This thesis presents a power generator for remote plasma source, which is used for cleaning semiconductor processors. The proposed system adopts inductively coupled plasma (ICP), also known as transformer coupled plasma (TCP), to generate the plasma, and this method is commonly used in high-density plasma systems for semiconductor manufacturing to achieve better performance.
The proposed research is to design and implement a DC to AC inverter. The system configuration is using full-bridge parallel resonant inverter circuit, and the operation frequency is between 300 kHz and 400 kHz. System operation frequency is higher than the resonant frequency to achieve zero-voltage switching and to reduce switching losses of the switches. In addition, the use of a resonant circuit forces the output voltage to be sinusoidal, which can reduce electromagnetic interference. In this research, a digital controller improves the freedom and reliability of the system operation, and uses the microcontroller for software protection or the protection circuit for hardware protection. When it is abnormal during operation, the system is protected in time from damage. Finally, this study implements a resonant inverter with input dc voltage 400 V, output ac voltage 400 Vp and the maximum power of 5 kW, which verifies the analysis, the control strategies and the feasibility of the inverter operation through the measured results.
Keyword : Plasma, Inductively coupled plasma, Trasformer coupled plasma, Resonant, Zero voltage switching.
摘要........................................................................................................... ii
Abstract ..................................................................................................... iii
誌謝.......................................................................................................... iv
總目錄...................................................................................................... iv
圖目錄.................................................................................................... viii
表目錄..................................................................................................... xii
第一章緒論 ...........................................................................................1
1-1 研究背景與動機........................................................................................1
1-2 文獻回顧.....................................................................................................2
1-2-1 遠距電漿系統應用[7] ........................................................................2
1-2-2 電漿簡介............................................................................................3
1-2-3 電漿電源介紹[13] ..............................................................................7
1-2-4 電感耦合式電漿................................................................................8
1-2-5 諧振式轉換器..................................................................................10
1-3 論文大綱...................................................................................................11
第二章全橋諧振換流器架構與設計.................................................12
2-1 全橋諧振換流器系統架構.......................................................................12
2-2 遠距電漿源等效負載..............................................................................14
2-3 變壓器等效模型......................................................................................15
2-4 諧振槽設計..............................................................................................16
第三章硬體周邊電路.........................................................................28
3-1 輔助電源電路...........................................................................................28
3-2 電壓箝位保護電路...................................................................................30
vi
3-3 差動降壓電路...........................................................................................30
3-4 峰值偵測電路...........................................................................................31
3-5 交流電壓回授電路...................................................................................32
3-6 諧振電流回授電路...................................................................................33
3-7 直流鏈電壓回授電路...............................................................................34
3-8 過流/過壓硬體保護電路..........................................................................35
3-9 開關隔離驅動電路...................................................................................36
第四章韌體規劃與控制流程.............................................................39
4-1 韌體系統架構...........................................................................................39
4-2 微控制器RX62T 介紹...........................................................................40
4-3 主程式流程規劃.......................................................................................43
4-4 類比/數位轉換中斷副程式流程規劃......................................................45
第五章 電路製作與實測驗證.............................................................48
5-1 電氣規格與功率開關元件選擇...............................................................48
5-2 實務考量...................................................................................................49
5-2-1 諧振電感鐵芯與絞線種類選擇......................................................49
5-2-2 電流感測元件..................................................................................50
5-2-3 高頻訊號回授..................................................................................53
5-2-4 開關驅動性能改善..........................................................................54
5-2-5 開關PWM訊號計算......................................................................57
5-2-6 模擬等效負載..................................................................................59
5-3 實測結果波形...........................................................................................66
5-4 損耗分析...................................................................................................73
第六章結論與未來展望.....................................................................76
vii
6-1 結論………………………………………………………………………76
6-2 未來研究方向...........................................................................................76
參考文獻.................................................................................................78
[1] T. Oda , T. Takahashi and R. Yamashita, “Non Thermal Plasma Processing for VOCs Decomposition and NOx Removal in Flue Gas,” J. Adv. Oxid. Technol., vol. 2, no. 2, pp. 337-345, 1997.
[2] L. Xiao-jing, Q. Guan-jun and C. Jie-rong, “The Effect of Surface Modification by Nitrogen Plasma on Photocatalytic Degradation of Polyvinyl Chloride Films,” Applied Surface Science, vol. 254, no. 20, pp. 6568-6574, 2008.
[3] M. Laroussi, “Sterilization of Contaminated Matter with an Atmospheric Pressure Plasma,” IEEE Transactions on Plasma Science, vol. 24, no. 3, pp. 1188-1191, 1996.
[4] 李曼君,以電漿結合觸媒破壞去除NF3之初步研究,國立中央大學-環境工程研究所-碩士論文,民國93年1月。
[5] 余志昱,變壓器耦合式電漿之研究,國立清華大學-物理學系-碩士論文,民國99年6月。
[6] 吳信宏,改良式動態調整機制於電漿設備用阻抗匹配器之研究,國立成功大學-電機工程學系-碩士論文,民國104年7月。
[7] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, vol. PM220, 2012.
[8] B. Eliasson and U. Kogelschatz, “Nonequilibrium Volume Plasma Chemical Processing,” IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1063-1077, 1991.
79
[9] M. I. Boulos, “Thermal Plasma Processing,” IEEE Transactions on Plasma Science, vol. 19, No. 6, pp. 1078-1089, 1991.
[10] R. Kenneth Marcus and J. A. C. Broekaert, “Glow Discharge Plasmas in Analytical Spectroscopy,” John Wiley & Sons, Ltd, 2003.
[11] 楊超棨,介電質常壓電漿產生器之開發及其於質譜分析之應用,國立中山大學-機械與機電工程學系-碩士論文,民國99年1月。
[12] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,” IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
[13] 賴翰穎,應用於3kW射頻電漿電源E類換流器之研製,國立成功大學-電機工程學系-碩士論文,民國104年7月。
[14] 柳克強,電漿源原理與應用之介紹,物理雙月刊,廿八卷二期,2006年四月。
[15] J. Hopwood, “Review of Inductively Coupled Plasmas for Plasma Processing,” Plasma Sources Science and Technology, vol. 1, pp. 109-116, 1992.
[16] 林剛毅,變壓器耦合式電漿源特性量測與等效電路模擬分析,國立清華大學-物理學系-碩士論文,民國101年7月。
[17] K. Tran and A. Millner, “A New Power Supply to Ignite and Sustain Plasma in a Reactive Gas Generator,” 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008.
80
[18] 陳宜宏,實現數位控制之LLC諧振轉換器,國立臺北科技大學-電機工程系-碩士論文,民國99年7月。
[19] Mean Well, “LRS-35 Series Datasheet,” 2017.
[20] Mean Well, “DCW03 Series Datasheet,” 2018.
[21] Mean Well, “SCW05 Series Datasheet,” 2018.
[22] TOSHIBA, “TLP-2367 Datasheet,” 2017.
[23] UNITRODE, “UC3710 Datasheet,” 2017.
[24] Renesas, “RX62T Group Datasheet,” Rev. 1.10, Apr. 2011.
[25] 林柏言,電感之種類與其特性分析,立錡科技,2017。
[26] Magnetics Company, “Ferrite cores”, 2017.
[27] LEM, “LAX 100-NP Datasheet,”.2015.
[28] Allegro, “ACS730 Datasheet,” 2018.
[29] 德鍵電子,高率電阻器線繞術語,2017。
[30] Ohmite, “TGH600 Series Datasheet,” 2017.
[31] TDK, “Material Characteristics,” 2018.
[32] CREE, “C2M0025120D Datasheet,” 2015.
[33] B. Li, Q. Li and F. C. Lee , “A WBG Based Three Phase 12.5 kW 500 kHz CLLC Resonant Converter with Integrated PCB Winding Transformer,” IEEE Applied Power Electronics Conference and Exposition (APEC), 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *