帳號:guest(18.226.185.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳韋錡
作者(外文):Chen, Wei-Chi
論文名稱(中文):分切合整數位控制 高低頻互補換流器功率調配與漣波補償
論文名稱(外文):Power Scheduling and Ripple-Current Compensation for D-Σ Digital Controlled Hybrid-Frequency Inverters
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):陳科宏
余國瑞
謝耀慶
口試委員(外文):Chen, Ke-Horng
Yu, Gwo-Ruey
Hsieh, Yao-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061505
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:三相四線式換流器分切合整數位控制高低頻互補換流器漣波電流消除功率調配
外文關鍵詞:three-phase four-wire inverterD-Σ digital controlripple cancellationgrid connectionhybrid frequency inverterpower scheduling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:510
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究研製一額定容量為10 kVA高低頻互補換流器並改善其漣波補償效率和加入功率調配等功能,其中包含兩台並聯之三相四線半橋式換流器,並使用兩顆微控制器Renesas RX62T晶片分別操作於不同頻率。低頻換流器額定功率較高,高頻換流器額定功率較低。本換流器透過高低頻電流互補控制,以消除低頻電感漣波電流。在漣波消除操作模式下,動態響應與等效漣波電流由高頻換流器主導。高切換頻率使系統有較快之動態響應與較小之電流濾波器。通過高低頻換流器功率配置,傳統大功率且高頻換流器與系統內對應規格之零件可由低頻大功率和高頻低功率元件取代,達到相同功率與動態響應,同時符合併網換流器電力品質規範。
在換流器控制方面,分切合整數位控制可省去abc-dq座標軸轉換,直接由電流誤差計算對應的開關責任比,同時抵消直流鏈電壓、開關切換頻率以及電感值變動的影響,故適合用於低頻電感漣波電流計算與互補消除。此外,分切合整數位控制可針對低頻漣波計算斜率並精準補償將漣波消除。把分切合整數位控制法實際應用於換流器的控制,以模擬與實測結果來驗證此系統的可行性。
This thesis shows research results of a 10 kVA division-summation (D-Σ) digital controlled hybrid-frequency inverters (HbFIs) and the refinement of the ripple compensation and power scheduling. The system consists of two parallel three-phase four-wire half-bridge inverters with different switching frequencies and power ratings and with microcontroller Renesas RX62Ts as control kernels. Low Frequency Inverter operates with high power rating, while High Frequency Inverter operates with low power rating. HbFIs cancel out the low frequency current ripples with the ripple cancellation control. With ripple cancellation, the dynamic response and equivalent switching frequency of the system is dominated by the High Frequency Inverter. Higher switching frequency increases the dynamic response and reduces the size of its LCL filter. Also, with power scheduling, the components in the high power high frequency inverter can be replaced with high power low frequency and low power high frequency ones while satisfying the high power high dynamic response specifications and the power quality regulation for grid connected applications.
Regarding the control of the inverter,the D-Σ digital control calculates the command for SPWM from current error without operating abc-dq frame transformation. Variations of dc bus voltage, ac side voltage and inductance have been taken into consideration. Hence,the D-Σ digital control is suitable for low frequency current ripple cancellation. Besides,D-Σ digital control can accurately calculate the slope of the low frequency current ripple and cancel the ripples precisely. Finally,the D-Σ digital control for ripple cancellation is conducted on a practical system. And the feasibility of HbFIs is verified by both simulated and experimental results.
誌謝 i
摘要 ii
Abstract iii
總目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 單模組換流器架構 3
1-2-2 多模組換流器架構 5
1-2-3 併網型換流器濾波器架構 10
1-2-4 換流器控制方法 12
1-3 論文大綱 14
第二章 系統架構與漣波消除 16
2-1 系統架構 16
2-2 17
2-3 分切合整數位控制 17
2-2-1 受控體 17
2-2-2 低頻換流器分切合整數位控制 20
2-2-3 高頻換流器漣波消除分切合整數位控制 20
第三章 高低頻LCL濾波器設計 24
3-1 設計原則 24
3-1-1 開關額定與漣波電流峰值規範 24
3-1-2 電感漣波電流斜率規範 25
3-1-3 切頻與漣波剩餘率規範 26
3-2 LCL濾波器設計流程 30
3-2-1 濾波器導向設計 30
3-2-2 功率模組導向設計 31
第四章 功率調配 33
4-1設計原則 33
4-1-1加載加速模式 33
4-1-2 降載加速模式 34
4-1-3 固定比例模式 35
4-1-4模式損耗指標表 37
4-2損耗分析 38
4-2-1電感損耗 38
4-2-2導通損耗 41
4-2-3切換損耗 42
4-2-4總損耗與效率 43
第五章 系統周邊電路 44
5-1 輔助電源 44
5-2 開關驅動電源 46
5-3 電壓箝位電路 46
5-4 精密全波整流電路 47
5-5 偏壓放大電路 48
5-6 主動訊號箝位電路 49
5-7 交流電壓回授電路 49
5-8 電感電流回授電路 51
5-9 直流鏈電壓回授電路 51
5-10 上下臂開關隔離驅動電路 52
5-11 電網隔離電路 53
第六章 韌體規劃 54
6-1 RX62T群組微控制器簡介 54
6-2 低頻換流器主程式流程規劃 57
6-3 A/D低頻中斷副程式流程規劃 58
6-4 高頻換流器主程式流程規劃 60
6-5 A/D高頻中斷副程式流程規劃 61
第七章 系統設計與研製 62
7-1系統規格與LCL濾波器參數總表 62
7-2實務考量 63
7-2-1 電感值變化 63
7-2-2 電流回授訊號頻寬設計 64
7-2-3 程式複雜度優化 68
7-2-4 高頻換流器開關責任比上限與漣波補償限制 69
第八章 模擬與實驗結果 70
8-1換流器模擬系統建模 70
8-2模擬波形 71
8-3實驗波形 74
第九章 結論與未來研究方向 89
9-1結論 89
9-2未來研究方向 90
參考文獻 91

[1] N. Chudoung and S. Sangwongwanich, “A simple carrier-based PWM method for three-phase four-leg inverters considering all four pole voltages simultaneously,” 2007 7th International Conference on Power Electronics and Drive Systems, pp. 1020-1027, Nov. 2007.
[2] A. Bellini and S. Bifaretti, “A simple control technique for three-phase four-leg inverters,” Proc. Int. Symp. Power Electron. Elect. Drives Autom. Motion, pp. 1143-1148, May. 2006.
[3] E. Ortjohann, A. Mohd, N. Hamsic, and M. Lingemann, “Design and experimental investigation of space vector modulation for three-leg four-wire voltage source inverters,” European Conference on Power Electronics and Applications, pp. 1-6, Sep. 2009.
[4] M. V. M. Kumar and M. K. Mishra, “A three-leg inverter based DSTATCOM topology for compensating unbalanced and nonlinear loads,” IEEE International Conference on Power Electronics, pp. 1-6, Dec. 2014.
[5] B. Singh, K. Al-Haddad and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, Oct. 1999.
[6] H. Akagi, “New trends in active filters for power conditioning,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1312-1322, Nov 1996.
[7] H. Fujita and H. Akagi, “The unified power quality conditioner: the integration of series and shunt-active filters,” IEEE Trans. Power Electron., vol. 13, no. 2, pp. 315-322, Mar. 1998.
[8] H. Akagi, “Active harmonic filters,” Proc. IEEE, vol. 93, no. 12, pp. 2128-2141, Dec. 2005.
[9] X. Wang, Y. W. Li, F. Blaabjerg and P. C. Loh, “Virtual-impedance-based control for voltage-source and current-source converters,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7019-7037, Dec. 2015.
[10] X. Wang, F. Blaabjerg, M. Liserre, Z. Chen, J. He, and Y. Li, “An active damper for stabilizing power-electronics-based AC systems,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3318–3329, Jul. 2014.
[11] X. Wang, F. Blaabjerg and M. Liserre, “An active damper to suppress multiple resonances with unknown frequencies,” Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 2184-2191, 2014.
[12] D. Leblanc, B. Nahid-Mobarakeh, B. Pham, S. Pierfederici, and B. Davat, “Stability analysis and active stabilization by a centralized stabilizer of voltage-source-rectifier loads in AC microgrids,” Proc. IEEE Ind. Appl. Soc., pp. 1-8, 2013.
[13] A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” Proc. IEEE Bologna Power Tech Conf., vol.3, pp. 6, 2003.
[14] J. S. Lai and F. Z. Peng, “Multilevel converters - A new breed of power converters,” Proc. 30th IEEE IAS Annu. Meet., vol. 3, pp. 2348-2356, 1995.
[15] E. Behrouzian, M. Bongiorno and H. Z. De La Parra, “An overview of multilevel converter topologies for grid connected applications,” European Conference on Power Electronics and Applications, pp. 1-10, 2013.
[16] S. Kouro, M. Malinowski, et al., “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
[17] J. S. S. Prasad and G. Narayanan, “Minimization of grid current distortion in parallel-connected converters through carrier interleaving,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 76-91, Jan. 2014.
[18] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std 519™-2014, Mar. 2014.
[19] K. H. Ang, G. Chong and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. on Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[20] P. R. Ouyang, V. Pano and T. Dam, “PID contour tracking control in position domain,” International Symposium on Industrial Electronics, pp. 1297-1302, May. 2012.
[21] J. D. Li, S. Z. Wei, W. Qiong, and X. Peng, “A switching-inverter power controller based on fuzzy adaptive PID” IEEE International Forum on Strategic Technology, pp. 695-699, Aug. 2011.
[22] C. Qin, Q. Wang, Q. Chen, G. Li, and C. Hu, “Application of fuzzy PID with loss balancing control in three-level active NPC inverter,” IEEE Conference on Industrial Electronics and Applications, pp. 1466-1470, Jun. 2015.
[23] D. Chen, J. Zhang and Z. Qian, “An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 814-823, Feb. 2013.
[24] M. Wu, B. Xu, W. Cao, and J. She, “Aperiodic disturbance rejection in repetitive-control systems,” IEEE Trans. on Control Systems Technology, vol. 22, no. 3, pp. 1044-1051, May. 2014.
[25] T.-Y. Doh and J. R. Ryoo, “Robust repetitive controller design and its application on the track-following control system in optical disk drives,” IEEE Conference on Decision and Control and European Control Conference, pp. 1644-1649, Dec. 2011.
[26] S. Saggini, W. Stefanutti, E. Tedeschi, and P. Mattavelli, “Digital deadbeat control tuning for DC-DC converters using error correlation,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1556-1570, Jul. 2007.
[27] Y. Ping, C. Nan and L. Shengrong, “Research on the improved current deadbeat control algorithm of photovoltaic grid-connected inverter” IEEE Conference on Power Electronics Systems and Applications, pp. 1-3, Jun. 2011.
[28] G. Han, Y. Xia and W. Min, “Study on the three-phase PV grid-connected inverter based on deadbeat control,” IEEE Conference on Power Engineering and Automation Conference, pp. 1-4, Sep. 2012.
[29] M. S. Khireddine, M. Makhloufi, Y. Abdessemed and A. Boutarafa, “Tracking power photovoltaic system with a fuzzy logic strategy,” IEEE International Conference on Computer Science and Information Technology, pp. 42-49, Mar. 2014.
[30] G. R. Yu and J. S. Wei, “Fuzzy control of a bi-directional inverter with nonlinear inductance for DC microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[31] S. A. Krishna and L. Abraham, “Boost converter based power factor correction for single phase rectifier using fuzzy logic control,” IEEE International Conference on Computational Systems and Communications, pp. 122-126, Dec. 2014.
[32] CSC, MAGNETIC POWDER CORES, ver 12.
[33] CREE, CAS300M12BM2 Datasheet, 2014.
[34] NXP Semiconductors, UC3843 Datasheet, rev. 4, 2012.
[35] ST, VIPer22AS Datasheet, rev. 2, 2010.
[36] Renesas Electronics, “RX62T/62G Group Datasheet,“ Jan. 2014.
[37] LEM, LA-55P Datasheet.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *