帳號:guest(3.138.36.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林庭鴻
作者(外文):Lin, Ting-Hung
論文名稱(中文):高功率三相不斷電系統與IGBT開關模組驅動電路研製
論文名稱(外文):Design and Implementation of High Power Three-phase Uninterruptible Power Systems and IGBT Module Drivers
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):潘晴財
林長華
羅有綱
口試委員(外文):Pan, Ching-Tsai
Lin, Chang-Hua
Lo, Yu-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061503
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:不斷電系統分切合整數位控制負載電流估測交流穩壓開關模組驅動電路
外文關鍵詞:Uninterruptible power systemsD-Σ digital controlLoad current estimationac voltage regulationIGBT module drivers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:570
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
因應電力需求量和穩定度要求,本研究研製高功率不斷電系統與開關模組驅動電路,不斷電系統採用三相四線半橋式轉換器作為高功率的傳輸媒介,並將微控制器Renesas RX62T作為控制核心。
在交流穩壓模式下,轉換器採用分切合整數位控制法,並結合正弦脈波寬度調變以實現回授控制。與傳統類比控制法相比,分切合整數位控制法將系統參數變化,如直流鏈電壓、交流輸出電壓、電感值和切換週期等皆納入考量,抵消參數變化對於受控體的影響,並直接計算出開關責任比率。
本研究在控制法中加入負載電流估測法。每一切換週期內預測負載端的濾波電容電流與負載電流變化量,使轉換器能夠輸出穩定的三相弦波電壓。為了測試高功率不斷電系統,提出硬體在環測試。此測試法的直流鏈端由電源供應器負責穩壓,電路架構上使兩部轉換器具有共同的直流鏈及交流端,最終使功率於兩部轉換器內進行循環。本研究針對高功率開關模組設計驅動電路,內容將詳細介紹如何根據數據表設計驅動電路參數、選擇驅動電路架構以及保護電路等實務考量。
本研究主要貢獻包含:(1)採用分切合整數位控制法,簡化繁瑣計算過程並將電感值衰減納入考量。(2)結合負載電流估測法,於每一切換週期內,即時地預測下一切換週期欲補償的電感電流變化量,透過分切合整數位控制,輸出穩定弦波電壓。(3)提出硬體在環測試法,利用轉換器抽取各式負載。使高功率不斷電系統之交流穩壓功能得到驗證。(4)設計高功率開關模組驅動電路,穩定且高效率地使轉換器進行功率轉換。
In response to the demand for power and stability, this research develops design and implementation of high-power uninterruptible power systems and IGBT module drivers. The uninterruptible power systems use three-phase four-wire half-bridge converter as high-power transmission medium and the microcontroller Renesas RX62T is the control center of the systems.
In the ac voltage regulation mode, the converter adopts the division-summation (D-Σ) digital control, combined with sinusoidal pulse width modulation (SPWM) to realize the feedback control. Compared with the analog control, the D-Σ digital control takes into account the system parameter variations, such as dc link voltage, ac output voltage, inductance value, and switching period, to offset the influence of parameter changing on the controlled plant, and calculates the duty ratio directly.
In this research, the load current estimation is also applied to the D-Σ digital control. In the load current estimation, the filter capacitor current variations and load current variations can be predicted in each switching period, so that the converter can output stable three-phase sinusoidal voltages. In order to test the high-power uninterruptible power system, “Hardware in the Loop” is proposed. The dc-bus is regulated by the power supply. The circuit structure makes the two converters have a common dc link and ac terminal. Finally, the power is circulated in the two converters.
This research also designs drivers for the high-power IGBT module used in the converter. Describe in detail how to design the parameters of the drivers, select the architecture of the drivers, and design the protection circuits based on data sheets.
The main contributions of this research include: (1) Using D-Σ digital control to simplify the cumbersome calculation process and take into account the attenuation of the inductance. (2) Combined with the load current estimation, the inductor current variation compensating in the next the switching cycle is calculated instantaneously, and output the stable sinusoidal voltages through D-Σ digital control. (3) “ Hardware in the Loop” is proposed, and various loads are extracted by using converter. The ac voltage regulation function of the high-power uninterruptible power system is verified. (4) Design high-power IGBT module drivers to make converter convert power stably and efficiently.
摘要 i
Abstract ii
誌謝 iv
總目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 不斷電系統架構簡介 2
1-2-2 轉換器架構簡介 5
1-2-3 轉換器控制法簡介 8
1-3 論文大綱 10
第二章 系統架構與控制演算法 11
2-1 系統架構 11
2-2 分切合整數位控制法 12
2-2-1 負載端電壓正半週 13
2-2-2 負載端電壓負半週 16
2-3 負載電流估測法 19
2-3-1 電容電流變化量 20
2-3-2 負載電流變化量 21
第三章 硬體周邊電路 23
3-1 控制級輔助電源 23
3-2 電壓/電流回授電路 25
3-2-1 直流鏈電壓回授 25
3-2-2 電感電流回授 26
3-2-3 負載電流回授 27
3-2-4 交流電壓回授 28
3-3 保護電路 29
3-3-1 過壓/過流保護電路 29
3-3-2 電壓箝位保護電路 30
3-3-3 輔助電源偵錯電路 30
3-3-4 緊急開關電路 31
第四章 高功率開關模組驅動電路 32
4-1 IGBT開關模組—FF900R12IP4 32
4-2 驅動電路參數設計 34
4-2-1 閘級驅動電壓 34
4-2-2 外部閘級電阻 36
4-3 驅動電路架構 39
4-3-1 開關驅動輔助電源 39
4-3-2 光纖傳輸電路 41
4-3-3 光耦合隔離電路 42
4-3-4 推挽式放大電路 44
4-4 寄生元件切換效應 46
4-4-1 米勒電容效應之導通誤動作 46
4-4-2 雜散電感之導通誤動作 47
4-4-3 瞬態電壓抑制二極體 48
4-5 開關切換波形與改善 49
4-5-1 開關驅動電路比較 49
4-5-2 開關切換波形比較 52
第五章 韌體架構與控制流程 57
5-1 硬體在環測試(Hardware in the Loop) 57
5-2 微控制器RX62T簡介 59
5-3 主要級(Master)轉換器控制流程 62
5-3-1 主程式控制流程 62
5-3-2 類比/數位中斷副程式流程 63
5-4 次要級(Slave)轉換器控制流程 64
5-4-1 主程式控制流程 64
5-4-2 類比/數位中斷副程式流程 65
5-5 動態響應提升 66
5-6 變頻載波同步 68
第六章 系統模擬與實測驗證 70
6-1 轉換器規格與元件 70
6-2 Matlab/Simulink模擬 71
6-3 模擬與實測波形比較 74
6-3-1 電阻性負載 74
6-3-2 電容性負載 76
6-3-3 電感性負載 78
6-3-4 非線性負載 80
第七章 結論與未來研究方向 82
7-1 結論 82
7-2 未來研究方向 83
7-2-1 改善負載電流估測法 83
7-2-2 採用LCL濾波器 83
7-2-3 並聯高頻式轉換器 83
7-2-4 通訊功能 83
參考文獻 84
[1] 柯嘉閔,單相半橋在線式不斷電系統之研製,國立成功大學電機工程系-碩士論文,民國91年6月。
[2] J. M. Guerrero, L. G. D. Vicuna and J. Uceda, “Uninterruptible Power Supply System Provide Protection,” IEEE Industrial Electronics Magazine, Spring 2007
[3] V. Monteiro, B. Exposto, J. C. Ferreira, and J. L. Afonso, “Improved Vehicle-to-Home (iV2H) Operation Mode: Experimental Analysis of the Electric Vehicle as Off-Line UPS,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2702-2711, Nov. 2017.
[4] H. L. Jou, J. C. Wu, C. Tsai, K. D. Wu, and M. S. Huang, “Novel line-interactive uninterruptible power supply,” IEE Proc. Electr. Power Appl., vol. 151, no. 3, pp. 359-364, May 2004.
[5] J. K. Park, J. M. Kwon, E. H. Kim, and B. H. Kwon, “High-Performance Transformerless Online UPS,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2943-2953, Aug. 2008.
[6] E. H. Kim, J. M. Kwon and B. H. Kwon, “Transformerless three-phase on-line UPS with high performance”, IET Power Electron., vol. 2, no. 2, pp. 103-112, Mar. 2009.
[7] 杜光宗,不斷電電源裝置構造,建宏出版1991。
[8] 王鈞平,分切合整數位控制100kVA多功能轉換器研製,國立清華大學電機工程研究所碩士論文,民國105年7月。
[9] B. P. Roberts, “Off Line UPS for Computer Power Applications”, INTELEC '82 - International Telecommunications Energy Conference, pp. 61-64, 1982.

[10] R. A. Modesto, S. A. Oliveira da Silva and A. A. de Oliveira, “Line-interactive UPS system applied to three-phase four-wire systems with universal filtering capabilities,” 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, pp. 1858-1865, 2014.
[11] M. F. Apolinário, R. P. Torrico-Bascopé and S. Daher, “A 110V/220V grid voltage on-line UPS based on High Frequency isolated four-port circuit,” 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, pp. 1-6, 2015.
[12] E. Ortjohann, A. Mohd, N. Hamsic, and M. Lingemann, “Design and experimental investigation of space vector modulation for three-leg four-wire voltage source inverters,” 2009 13th European Conference on Power Electronics and Applications, Barcelona, pp. 1-6, 2009.
[13] J.-H. Kim and S.-K. Sul, “A carrier-based PWM method for three-phase four-leg voltage source converters,” in IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 66-75, Jan. 2004.
[14] A. Bellini and S. Bifaretti, “A simple control technique for three-phase four-leg inverters,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., Taormina, pp. 1143-1148, 2006.
[15] K. H. Ang, G. Chong and Yun Li, “PID control system analysis, design, and technology,” in IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, July 2005.
[16] P. R. Ouyang, V. Pano and T. Dam, “PID contour tracking control in position domain,” 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, pp. 1297-1302, 2012.
[17] W. Yu and X. Li, “Stable PID control for robot manipulators with neural compensation,” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, pp. 5398-5403, 2012.
[18] D. Chen, J. Zhang and Z. Qian, “An Improved Repetitive Control Scheme for Grid-Connected Inverter with Frequency-Adaptive Capability,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[19] M. Wu, B. Xu, W. Cao and J. She, “Aperiodic Disturbance Rejection in Repetitive-Control Systems,” in IEEE Transactions on Control Systems Technology, vol. 22, no. 3, pp. 1044-1051, May 2014.
[20] T. Doh and J. R. Ryoo, “Robust repetitive controller design and its application on the track-following control system in optical disk drives,” 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, pp. 1644-1649, 2011.
[21] 王星翰,具強健性之重複控制器應用於直流至交流轉換器,國立中山大學電機工程學系碩士論文,民國101年8月。
[22] RS-35-SPEC, RS-35W系列單組輸出開關電源,民國107年1月。
[23] BSH-1000ICV5M Current Sensors Datasheet.
[24] HTA 600-S Current Transducer Datasheet
[25] Technical Information IGBT-Module FF900R12IP4, Nov. 2013.
[26] Industrial IGBT Modules Explanation of Technical Information, Sep. 2011
[27] TNY274-280 TinySwitch-III Family Datasheet.
[28] HFBR-0500Z Series, The Versatile Fiber Optic Connection Datasheet.
[29] Photocouplers GaAlAS infrared LED & Photo IC, TLP358 Datassheet.
[30] 60V PNP low Saturation Medium Power Transistor in SOT89, ZXTP2012Z Datasheet, Jun. 2005.
[31] 60V NPN low Saturation Medium Power Transistor in SOT89, ZXTN2010Z Datasheet, Jun. 2005.
[32] P6KE Series, Transient Voltage Suppession Diode Datasheet, Jan. 2009.
[33] RX62T Group, RX62G Group User’s Manual, Dec. 2013.
[34] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, 2014
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *