帳號:guest(18.220.195.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游 翼
作者(外文):You, Yi.
論文名稱(中文):具頻率追蹤功能之超音波驅動器研製
論文名稱(外文):Design and Implementation of Ultrasonic Driver with Resonant Frequency Tracking
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):邱煌仁
張淵智
林景源
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:105061467
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:超音波驅動器頻率追蹤壓電陶瓷換能器非接觸式電能傳輸全橋換流電路
外文關鍵詞:Ultrasonic driverFrequency trackingPiezoelectric ceramic transducerContactless power transmissionFull bridge converter circuit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:311
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著硬脆材料等高性能新型材料的廣泛應用,超音波加工為目前加工硬脆材料最有效的方法而廣受關注。超音波加工系統主要由超音波驅動器、電能傳輸裝置、超音波換能器及加工機床等構成。超音波驅動器爲超音波加工的核心,影響著整個超音波加工系統的性能,且驅動器設計與電能傳輸裝置和換能器之電性參數息息相關。
本研究首先分析了超音波換能器與鬆耦合感應變壓器的等效電路模型及其阻抗特性,並量測相關電性參數,為建模提供數據。其次,將換能器和變壓器作爲一個整體進行阻抗匹配,並嘗試設計低通濾波器,以降低驅動器輸出電壓的諧波成分;然後對驅動器架構與動作原理進行詳細分析,此部分講述了BUCK降壓電路的實現,介紹常用的三種逆變電路及兩種頻率追蹤方法。本研究採用全橋換流電路來轉換直流電壓成交流電壓輸出,並使用最大電流法通過頻率掃描的方式,以尋找換能器的諧振頻率點。在換能器工作過程中,由於諧振點變化不大,採用擾動觀察法來追蹤諧振頻率,從而使換能器始終工作在其諧振頻率點。
本研究的主要貢獻如下:第一是分別分析換能器、變壓器及換能器組成的整體之阻抗特性曲線。闡述加入變壓器後,換能器諧振頻率點的體現,其有利於具諧振頻率點追蹤功能之驅動器設計。第二在設計換能器匹配網絡時,計入並抵消因非接觸式耦合變壓器漏感所引入的感性成分,有別於傳統的次級匹配方法,使系統的虛功更小,且具有結構簡單、成本低、實用價值高等優點。第三是採用擾動觀察法追蹤諧振頻率來彌補最大電流法的不足,兩者結合有效避免了最大電流法追蹤諧振頻率需要重新掃描,進而影響換能器工作及浪費時間的缺點。
With the wide applications of hard and brittle materials, ultrasonic machining which is regarded as the most effective method for processing the materials has received great attention. A ultrasonic processing system is mainly composed of ultrasonic driver, power transmission device, ultrasonic transducer and processing machine. As the core of ultrasonic processing, the ultrasonic driver affects the performance of the whole ultrasonic processing system, and the design of the driver is closely related to the electrical performance.
In this thesis, first, an equivalent circuit model and the impedance characteristic of the ultrasonic transducer and the loose coupling transformer are analyzed, and the related electrical parameters are measured to provide the data for the modeling. Then the transducer and the transformer are connected as a whole to do impedance matching, and try to design a low-pass filter to reduce the harmonic component of driver output voltage. After some detailed analysis of the driver architecture and action principle, we describe the realization of buck converter, introduce three kinds of inverter circuits and two kinds of frequency tracking methods. This research uses a full-bridge converter to convert DC voltage into AC voltage output, and the maximum current method is used to find the resonant frequency point of the transducer, and the resonant frequency is tracked by perturbation-observation method during working process of transducer, so that the transducer always works at its resonant frequency point.
The main contributions of this thesis are as follows: first, the impedance characteristic of the transducer as well as the combination of transformer and transducer, are respectively analyzed. Explaining the identification of resonant frequency points of the transducer after adding transformer, is beneficial to the driver design. Secondly, the inductive components introduced by the non-contact coupling transformer leakage inductance are taken into account when designing the transducer matching network, which is different from the traditional secondary matching method, so that the system has smaller reactive power, simpler structure, lower cost and higher practical value. Thirdly, the perturbation method is used for tracking the resonant frequency. The combination of the two methods effectively avoids the shortcomings of maximum current method, which needs to re-scan and track the resonant frequency, thereby affecting the malfunction of the transducer and wasting time.
目錄
誌謝…… i
摘要…… ii
Abstract…. iii
目錄…… v
圖目錄….. viii
表目錄…. xiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 國內外研究現狀 3
1-2-1 非接觸式電能傳輸研究現狀 3
1-2-2 超音波電源研究現狀 5
1-3 論文大綱 7
第二章 換能器與變壓器等效電路模型分析 9
2-1 超音波換能器等效電路模型 9
2-1-1 換能器等效電路 10
2-1-2 換能器等效電路模擬 12
2-2 變壓器等效電路模型及3D模型 14
2-2-1 變壓器等效模型推導 15
2-2-2 變壓器參數的測量方法 22
2-2-3 刀把負載等效電路模擬 24
2-2-4 基於Maxwell的變壓器電磁場模擬 26
2-3 補償電路原理 29
2-3-1 換能器阻抗匹配 29
2-3-2 鬆耦合變壓器補償電容 30
2-3-3 低通濾波器設計 31
2-3-4 負載補償 36
2-3-5 電容補償與低通濾波器比較 41
第三章 驅動器架構與動作原理 43
3-1 Buck降壓型轉換器 43
3-2 逆變電路的設計 46
3-2-1 Push-Pull逆變電路 46
3-2-2 Half-bridge逆變器 47
3-2-3 Full-bridge逆變電路 48
3-3 常用頻率追蹤方法 48
3-3-1 鎖相迴路頻率追蹤方法 49
3-3-2 最大電流法 50
第四章 系統週邊電路設計 53
4-1 輔助電源 53
4-2 電壓保護電路 54
4-3 直流鏈電壓偵測電路 55
4-4 輸出電壓回授電路 56
4-5 電流感測電路 56
4-6 變動直流準位放大電路 57
4-7 自舉式驅動電路 58
4-8 開關隔離驅動電路 59
4-9 外部控制電路 59
4-10 電腦監控與手動控制系統 60
第五章 系統軟體規劃 63
5-1 系統軟體架構 63
5-2 控制流程規劃 64
5-2-1 微控制器RX62T簡介 64
5-2-2 控制流程 66
第六章 模擬與量測驗證 78
6-1 電氣與元件規格 78
6-2 實作電路 79
6-3 帶負載超音波驅動系統模擬 80
6-4 實務考量 81
6-4-1 電流放大電路考量 81
6-4-2 變動電流回授準位 82
6-5 實驗結果 84
6-5-1 追頻與鎖頻之量測波形 85
6-5-2 驅動器輸出方波之量測波形 86
6-5-3 驅動器輸出弦波之模擬與實測波形 87
6-5-4 驅動器補償電容模擬與實測波形 89
6-5-5 系統整合波形 91
第七章 結論與未來研究方向 93
7-1 結論 93
7-2 未來研究方向 94
參考文獻 95

[1] 康仁科,馬付建,董志剛等,"難加工材料超聲輔助切削加工技術[J]",航空製造技術,2012(16):46-49.
[2] H. Z. Wang and H. F. Li, "A PSoC-based parallel inductor connection driver of ultrasonic motor," 2008 International Conference on Electrical Machines and Systems, Wuhan, pp. 1465-1468,2008.
[3] 黃浩,"超聲輔助加工非接觸式電能傳輸系統模擬分析[D]",大連理工大學,2013.
[4] 黃文美,王博文,曹淑瑛,"計及渦流效應和應力變化的超磁致伸縮換能器的動態模型[J]",電機工程學報,2005,25(16):132.1 36.
[5] 林書玉,"超聲波換能器的原理及設計[M]",科學出版社,2003.
[6] http://www.pmc.org.tw/
[7] H. Zandi, B. Davat, B. Douine, and F. Sharif, "An overview on different drive topologies and strategies for power ultrasonic piezoelectric transducers," 2016 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Marrakech, pp. 1-5, 2016.
[8] S. H. Yu, Y. F. Hsieh, P. Y. Lai, Y. L. Chen, C. P. Yang, and K. Lin, "FPGA-based resonant-frequency-tracking power amplifier for ultrasonic transducer," 2015 International Conference on Applied Electronics (AE), Pilsen, pp. 285-288, 2015.
[9] T. Takura, H. Ishiai, F. Sato, H. Matsuki, and T. Sato, "Basic evaluation of signal transmission coil in transcutaneous magnetic telemetry system for artificial heart," INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, Nagoya, pp. 1143-1144, 2005.
[10] K. Iwawaki, M. Watada, S. Takatani, and Y. S. Um, "The design of core-type transcutaneous energy transmission systems for artificial heart," 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECO, Vol. 1, pp. 948-952, 2004.
[11] Y Wu, L. G. Yan and S. G. Xu, "Modeling and performance analysis of the new contactless power supply system," 2005 International Conference on Electrical Machines and Systems, Nanjing, Vol. 3, pp. 1983-1987, 2005.
[12] G. L. David, M. Ryan and E. David. Pacing toothbrush. U.S. Patent No 5,544,382, 1996.
[13] Roszyk and L. Barnas, Hand held battery operated device and charging means therefor. U.S. Patent No 3,840,795, 1974.
[14] G. A. Covic, J. T. Boys, M. L. G. Kissin, et a1, "A three-phase inductive power transfer system for roadway-powered vehicles," IEEE Transactions on Industrial Electronics, vol.54, no.6,pp. 3370-3378,2007.
[15] I. A. Khan, " Battery chargers for electric and hybrid Vehicles," IEEE Power Electronics in Transportation, pp. 103-112, 1994.
[16] S. Y. R. Hui, Planar inductive battery charger. U.S. Patent Application No 11/009,478, 2005.
[17] S. Y. R. Hui, "Apparatus for Energy Transfer by Induction," British Patent Application, 0226892.8.2003.
[18] S. Y. R. Hui and W. C. Ho, "A new generation of universal contactless battery charging platform for portable consumer electronic equipment," IEEE Transactions on Power Electronics, vol.20, no.3, pp. 620-627, 2005.
[19] 張俊偉,"旋轉超聲加工非接觸式供電理論及實驗研究",廣東工業大學碩士學位論文,2016.
[20] 呂仲哲,"感應電能傳輸超音波振動輔助主軸之諧振追蹤研究",國立中興大學機械工程研究所,碩士論文,2013.
[21] 李小雪,汪東,李平,"基於DDS的超聲波換能器頻率追蹤系統",電壓電與聲光,2009,3 1(5):692-698.
[22] 董惠娟,張廣玉,董瑋,"壓電超聲換能器電端匹配下的電流回饋式頻率追蹤[J]",哈爾濱工業大學學報,2000,32(3):115.117.
[23] 羅傑,"大功率超聲波電源及應用研究",華南理工大學碩士論文,2015.
[24] 張善理,"基於 DSP 的大功率數位化超聲波逆變電源[D]",無錫:江南大學,2011.
[25] 鮑善惠,"壓電換能器的動態匹配[J]",應用聲學,1998 ,17 (2) :16 -20.
[26] R.Coates and R. F. Mathams, "Design of matching networks for acoustic transducers," Ultrasonics, vol.26, no.2, pp. 59-64, 1988.
[27] M.Garcia-Rodriguez, et al, "Low cost matching network for ultrasonic transducers," Physics Procedia, vol.3, no.1, pp. 1025-1031, 2010.
[28] 冯若等,超声手册(M) ,南京:南京大学出版社,1999:18-281.
[29] 湯秀清,麥宇潤,2014,一種新型超聲波刀柄組件,中華人民共和國國家專利。
[30] https://www.computextaipei.com.tw
[31] 張磊磊,"大功率超聲清洗電源的研製[D]",蘭州:蘭州理工大學碩士論文,2009.
[32] 鮑善惠,王豔東,"壓電換能器在並聯諧振頻率附近特性的研究[J]",應用聲學,2006,25(2):165 168.
[33] 周雯琪,"感應耦合電能傳輸系統的特性與設計研究",浙江大學電氣工程學院碩士論文,2008年6月。
[34] 林書玉,"匹配電路對壓電陶瓷超聲換能器振動性能的影響",「壓電與聲光」,1995 (3) :27-30,1995.
[35] 武劍,董惠娟,張鬆柏,張廣玉,"壓電陶瓷換能器初級串聯匹配新方法",吉林大學學報(工學版)第39卷第6期,2009年11月。
[36] O. H. Stielau and G. A Covic, "Design of loosely coupled inductive power transfer systems," In: Power System Technology 2000. Proceedings. PowerCon 2000. International Conference on. IEEE, pp. 85-90, 2000.
[37] C. S. Wang, O. H. Stielau and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Transactions on industrial electronics, vol.52, no.5, pp. 1308-1314, 2005.
[38] 森榮二,"LC 濾波器設計與製作[M]", 北京:科學出版社,2005:49-59.
[39] zh.wikipedia.org/wiki
[40] W. Sun, et al, "Design considerations and experimental evaluation for LLC resonant converter with wide battery voltage range," In: Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. IEEE, pp. 1-6, 2014.
[41] H. Dong, J. Wu, H. Zhang, and G. Zhang, "Measurement of a piezoelectric transducer's mechanical resonant frequency based on residual vibration signals," The 2010 IEEE International Conference on Information and Automation, Harbin, pp. 1872-1876, 2010.
[42] 盧斌,"超聲波換能器諧振頻率追蹤方法研究",重慶大學電氣工程研究所碩士論文,2012年5月。
[43] D. P. Hohm and M. E. Ropp," Comparative study of maximum power point tracking algorithms," Progress in photovoltaics: Research and Applications, vol.11, no.1, pp. 47-62, 2003.
[44] https://www.alldatasheet.com
[45] Renesas, "RX62T Group User's Manual: Hardware," 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *