帳號:guest(3.22.249.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張翠璇
作者(外文):Chang, Tsui-Hsuan
論文名稱(中文):血清中巴拉刈及肌酸酐二合一快篩試片研製
論文名稱(外文):Development of a multiplexed diagnostic device for serum paraquat, creatinine detection
指導教授(中文):鄭兆珉
指導教授(外文):Cheng, Chao-Min
口試委員(中文):顏宗海
魯才德
口試委員(外文):Yen, Tzung-Hai
Lu, Tsai-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:105038513
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:74
中文關鍵詞:巴拉刈檢測肌酸酐檢測二合一檢測試片個人化醫療紙基檢測
外文關鍵詞:Paraquat detectionCreatinine detection2-in-1 PADsPOCPaper based diagnosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:132
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之主旨為開發二合一的檢測試片,同時檢測血清中的巴拉刈與肌酸酐濃度,提供臨床醫師一個在診斷巴拉刈中毒病人時,快速確診而不被地理環境所限制的方式。
巴拉刈於農業上使用效果良好,是全世界最廣泛使用的除草劑來源,然而,由於其對人體的高度毒性,微小的吞入量即可能造成吞入者的高致死率。臨床上使用 SIPP ( Severity Index of Paraquat Poisoning ) 作為診斷指標,以喝下巴拉刈到接受治療時間 ( Hour )乘以血液中的巴拉刈濃度 ( ppm ),若其乘積大於10,則患者便會被判定為高危險群,存活率較低。從臨床的觀點而言,治療巴拉刈中毒病人的診療上,「時間」是一個決定性的關鍵因素。
巴拉刈中毒的患者常常合併有多重性器官衰竭,肌酸酐作為判定腎功能的功能性指標,是判定是否有腎臟衰竭的標的,本研究中,開發 2-in-1 PADs 同時測試巴拉刈和肌酸酐在血清中的濃度,能夠有效的幫助巴拉刈中毒患者立即性的確診、治療以及預後。
This study aims to develop a comprehensive 2-in-1 PAD to detect the concentrations of Paraquat and creatinine in serum, which can help clinicians diagnose patients with severe Paraquat poisoning in a more rapid and geographically unrestricted manner.
Due to its efficacy, Paraquat is the most widely used herbicide in the world. However, it is also highly toxic, and lethal in minute doses. The term SIPP (Severity Index of Paraquat Poisoning) is a common terminology in the diagnosis of Paraquat. The severity index of the poisoned patient is calculated using the Paraquat blood concentration (ppm) multiplied by the time taken between exposure to Paraquat and accepting therapy (hr). If the value exceeds 10, the patient is considered to be at high risk, and the survival rate will be significantly reduced. From a clinical point of view, "time" is a key factor in the treatment of Paraquat poisoning patients.
In this study, the 2-in-1 PADs was developed to measure the concentration of Paraquat and creatinine. Creatinine concentrations serve as an indicator in the detection of renal function, can provide effective functional information, and would greatly assist the prompt diagnosis, treatment and rehabilitation of Paraquat poisoning patients.
中文摘要 II
英文摘要……………………………………………………………………………………..IV
致謝 IV
目錄…………………………………………………………………………………………..VI
表目錄 IX
圖目錄 X
符號對照表 XII
第一章 緒論 1
1.1 巴拉刈介紹 1
1.1.1巴拉刈中毒現況 1
1.1.2 巴拉刈的治療與預後 3
1.2肌酸酐檢測與巴拉刈中毒檢測關係 5
1.2.1 巴拉刈中毒與腎臟衰竭 5
1.2.2 目前市面上肌酸酐檢測產品 6
1.3 Point Of Care ( POC ) 發展 7
1.3.1 Point Of Care 簡介 7
1.3.2 紙基檢測 9
1.3.3 蠟印技術 11
1.4 呈色法介紹 12
1.4.1 酶分析 12
1.4.2 Colorimetric transduction 14
1.4.3 奈米粒子 15
1.4.5 其他方法 15
1.5 動機與實驗流程 18
1.5.1 研究動機 18
1.5.2 實驗流程 19
第二章 材料與方法 20
2.1 材料 20
2.1.1 藥物 20
2.1.2 器材 20
2.1.3 檢體 21
2.2 臨床檢驗 21
2.2.1 臨床檢驗使用機台介紹 21
2.3 單一試片條件測試 23
2.3.1 裝置展示 23
2.3.2 紙基材種類 25
2.3.3 反應區形狀 26
2.3.4 各部分實驗使用之 Pattern 27
2.3.5 Wax Printing 條件測試 29
2.3.6 製作試紙步驟 30
2.4 Paraquat 檢量線建立 31
2.4.1 Paraquat 檢測試驗 Framework 31
2.4.2 Paraquat 呈色反應 31
2.4.3 Paraquat 檢測步驟 32
2.4.4 反應順序測定 32
2.5 Creatinine 檢量線建立 34
2.5.1 Creatinine 檢測試驗 Framework 34
2.5.2 Creatinine 呈色反應 34
2.5.3 Creatinine 檢測步驟 36
2.6 2-in-1 PADs 研製 37
2.6.1 以 FBS 測試二合一試片 37
2.6.2 摺疊試片測試 38
2.6.3 複合材料測試 38
2.6.4 測試流道長度與孔洞大小參數 39
2.6.5 2-in-1 PADs 使用步驟 40
2.6.6 可視化試片探討 41
2.7 分析 42
2.8 以Excel 程式代入檢量線公式推測濃度值 43
第三章 實驗條件測試 45
3.1 紙質與形狀測試討論 45
3.2 蠟印參數條件測試討論 46
3.3 探討紙張不平影響結果 47
3.4 紙基混合狀態討論 48
第四章 巴拉刈和肌酸酐檢測 49
4.1 巴拉刈檢測 49
4.1.1 巴拉刈之反應順序討論 49
4.1.2 最佳反應時間 51
4.1.3 關於標準曲線中是否加入0 ppm 探討 51
4.1.4 巴拉刈在 buffer system 跟 serum system 的曲線差異 52
4.2肌酸酐檢測 53
4.2.1 裝置底色差異討論 53
4.2.2 Creatinine 在 serum system 和在 Buffer system 的表現差異 54
第五章 2-in-1 PADs 研製 56
5.1 摺疊試片結果討論 56
5.2 複合材料使用之探討 57
5.3 呈色之樣本液體體積對攝像之影響 58
5.4 可視化試片之試驗結果討論 59
第六章 檢體測試結果展示 61
6.1 2-in-1 之測試結果與醫院值比較 61
6.2 Linear regression analysis of creatinine detection 62
6.3 檢體血清基本狀態探討 63
6.4 臨床檢體資料表 64
第七章 結論與未來展望 65
7.1 未來可能研究方向 65
7.2 結論 66
第八章 參考文獻 68
第八章 參考文獻


[1] T. H. Yen, J. L. Lin, D. T. Lin-Tan, C. W. Hsu, C. H. Weng, and Y. H. Chen, "Spectrum of corrosive esophageal injury after intentional paraquat ingestion," Am J Emerg Med, vol. 28, pp. 728-33, Jul 2010.
[2] C. J. Yang, J. L. Lin, D. T. Lin-Tan, C. H. Weng, C. W. Hsu, S. Y. Lee, et al., "Spectrum of toxic hepatitis following intentional paraquat ingestion: analysis of 187 cases," Liver Int, vol. 32, pp. 1400-6, Oct 2012.
[3] Y. W. Hsieh, J. L. Lin, S. Y. Lee, C. H. Weng, H. Y. Yang, S. H. Liu, et al., "Paraquat poisoning in pediatric patients," Pediatr Emerg Care, vol. 29, pp. 487-91, Apr 2013.
[4] T. Y. Tsai, C. H. Weng, J. L. Lin, and T. H. Yen, "Suicide victim of paraquat poisoning make suitable corneal donor," Hum Exp Toxicol, vol. 30, pp. 71-3, Jan 2011.
[5] C. Wesseling, B. van Wendel de Joode, C. Ruepert, C. Leon, P. Monge, H. Hermosillo, et al., "Paraquat in developing countries," Int J Occup Environ Health, vol. 7, pp. 275-86, Oct-Dec 2001.
[6] C. Wesseling, M. Corriols, and V. Bravo, "Acute pesticide poisoning and pesticide registration in Central America," Toxicol Appl Pharmacol, vol. 207, pp. 697-705, Sep 1 2005.
[7] C. W. Hsu, J. L. Lin, D. T. Lin-Tan, K. H. Chen, T. H. Yen, M. S. Wu, et al., "Early hemoperfusion may improve survival of severely paraquat-poisoned patients," PLoS One, vol. 7, p. e48397, 2012.
[8] S. J. Seok, H. W. Gil, D. S. Jeong, J. O. Yang, E. Y. Lee, and S. Y. Hong, "Paraquat intoxication in subjects who attempt suicide: why they chose paraquat," Korean J Intern Med, vol. 24, pp. 247-51, Sep 2009.
[9] S. C. Choi, S. Oh, Y. G. Min, J. Y. Cha, H. W. Gil, and S. Y. Hong, "Evaluation of exhaled nitric oxide in acute paraquat poisoning: a pilot study," Med Sci Monit, vol. 20, pp. 167-72, Feb 1 2014.
[10] R. J. Dinis-Oliveira, J. A. Duarte, A. Sanchez-Navarro, F. Remiao, M. L. Bastos, and F. Carvalho, "Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment," Crit Rev Toxicol, vol. 38, pp. 13-71, 2008.
[11] D. Bonneh-Barkay, S. H. Reaney, W. J. Langston, and D. A. Di Monte, "Redox cycling of the herbicide paraquat in microglial cultures," Brain Res Mol Brain Res, vol. 134, pp. 52-6, Mar 24 2005.
[12] J. Peng, F. F. Stevenson, M. L. Oo, and J. K. Andersen, "Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation," Free Radic Biol Med, vol. 46, pp. 312-20, Jan 15 2009.
[13] I. B. Gawarammana and N. A. Buckley, "Medical management of paraquat ingestion," Br J Clin Pharmacol, vol. 72, pp. 745-57, Nov 2011.
[14] J. S. Bus, S. D. Aust, and J. E. Gibson, "Paraquat toxicity: proposed mechanism of action involving lipid peroxidation," Environ Health Perspect, vol. 16, pp. 139-46, Aug 1976.
[15] J. L. Lin, M. L. Leu, Y. C. Liu, and G. H. Chen, "A prospective clinical trial of pulse therapy with glucocorticoid and cyclophosphamide in moderate to severe paraquat-poisoned patients," Am J Respir Crit Care Med, vol. 159, pp. 357-60, Feb 1999.
[16] J. L. Lin, M. C. Wei, and Y. C. Liu, "Pulse therapy with cyclophosphamide and methylprednisolone in patients with moderate to severe paraquat poisoning: a preliminary report," Thorax, vol. 51, pp. 661-3, Jul 1996.
[17] W. P. Wu, M. N. Lai, C. H. Lin, Y. F. Li, C. Y. Lin, and M. J. Wu, "Addition of immunosuppressive treatment to hemoperfusion is associated with improved survival after paraquat poisoning: a nationwide study," PLoS One, vol. 9, p. e87568, 2014.
[18] J. L. Lin, L. Liu, and M. L. Leu, "Recovery of respiratory function in survivors with paraquat intoxication," Arch Environ Health, vol. 50, pp. 432-9, Nov-Dec 1995.
[19] T. B. Hart, A. Nevitt, and A. Whitehead, "A new statistical approach to the prognostic significance of plasma paraquat concentrations," Lancet, vol. 2, pp. 1222-3, Nov 24 1984.
[20] Y. Sawada, I. Yamamoto, T. Hirokane, Y. Nagai, Y. Satoh, and M. Ueyama, "Severity index of paraquat poisoning," Lancet, vol. 1, p. 1333, Jun 11 1988.
[21] Y. G. Min, J. H. Ahn, Y. C. Chan, S. H. Ng, M. L. Tse, F. L. Lau, et al., "Prediction of prognosis in acute paraquat poisoning using severity scoring system in emergency department," Clin Toxicol (Phila), vol. 49, pp. 840-5, Nov 2011.
[22] L. Minne, A. Abu-Hanna, and E. de Jonge, "Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review," Crit Care, vol. 12, p. R161, 2008.
[23] S. J. Kim, H. W. Gil, J. O. Yang, E. Y. Lee, and S. Y. Hong, "The clinical features of acute kidney injury in patients with acute paraquat intoxication," Nephrol Dial Transplant, vol. 24, pp. 1226-32, Apr 2009.
[24] C. H. Weng, H. H. Chen, C. C. Hu, W. H. Huang, C. W. Hsu, J. F. Fu, et al., "Predictors of acute kidney injury after paraquat intoxication," Oncotarget, vol. 8, pp. 51345-51354, Aug 1 2017.
[25] D. M. Roberts, M. F. Wilks, M. S. Roberts, R. Swaminathan, F. Mohamed, A. H. Dawson, et al., "Changes in the concentrations of creatinine, cystatin C and NGAL in patients with acute paraquat self-poisoning," Toxicol Lett, vol. 202, pp. 69-74, Apr 10 2011.
[26] C. Ragoucy-Sengler and B. Pileire, "A biological index to predict patient outcome in paraquat poisoning," Hum Exp Toxicol, vol. 15, pp. 265-8, Mar 1996.
[27] F. Mohamed, Z. Endre, S. Jayamanne, T. Pianta, P. Peake, C. Palangasinghe, et al., "Mechanisms underlying early rapid increases in creatinine in paraquat poisoning," PLoS One, vol. 10, p. e0122357, 2015.
[28] J. M. Scherrmann, P. Houze, C. Bismuth, and R. Bourdon, "Prognostic value of plasma and urine paraquat concentration," Hum Toxicol, vol. 6, pp. 91-3, Jan 1987.
[29] H. W. Gil, J. O. Yang, E. Y. Lee, and S. Y. Hong, "Clinical implication of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in patients with acute paraquat intoxication," Clin Toxicol (Phila), vol. 47, pp. 870-5, Nov 2009.
[30] M. Pavan, "Acute kidney injury following Paraquat poisoning in India," Iran J Kidney Dis, vol. 7, pp. 64-6, Jan 2013.
[31] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, "Recent developments in paper-based microfluidic devices," Anal Chem, vol. 87, pp. 19-41, Jan 6 2015.
[32] G. O. Evans, "The use of an enzymatic kit to measure plasma creatinine in the mouse and three other species," Comp Biochem Physiol B, vol. 85, pp. 193-5, 1986.
[33] C. D. Chin, V. Linder, and S. K. Sia, "Lab-on-a-chip devices for global health: past studies and future opportunities," Lab Chip, vol. 7, pp. 41-57, Jan 2007.
[34] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-73, Jul 27 2006.
[35] A. Nilghaz, D. H. Wicaksono, D. Gustiono, F. A. Abdul Majid, E. Supriyanto, and M. R. Abdul Kadir, "Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique," Lab Chip, vol. 12, pp. 209-18, Jan 7 2012.
[36] A. K. Yetisen, M. S. Akram, and C. R. Lowe, "Paper-based microfluidic point-of-care diagnostic devices," Lab Chip, vol. 13, pp. 2210-51, Jun 21 2013.
[37] N. R. Pollock, J. P. Rolland, S. Kumar, P. D. Beattie, S. Jain, F. Noubary, et al., "A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing," Sci Transl Med, vol. 4, p. 152ra129, Sep 19 2012.
[38] M. Y. Hsu, C. Y. Yang, W. H. Hsu, K. H. Lin, C. Y. Wang, Y. C. Shen, et al., "Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA," Biomaterials, vol. 35, pp. 3729-35, Apr 2014.
[39] C. K. Hsu, H. Y. Huang, W. R. Chen, W. Nishie, H. Ujiie, K. Natsuga, et al., "Paper-based ELISA for the detection of autoimmune antibodies in body fluid-the case of bullous pemphigoid," Anal Chem, vol. 86, pp. 4605-10, May 6 2014.
[40] X. Mao and T. J. Huang, "Microfluidic diagnostics for the developing world," Lab Chip, vol. 12, pp. 1412-6, Apr 21 2012.
[41] S. C. Lin, M. Y. Hsu, C. M. Kuan, H. K. Wang, C. L. Chang, F. G. Tseng, et al., "Cotton-based diagnostic devices," Sci Rep, vol. 4, p. 6976, Nov 13 2014.
[42] R. Consden, A. H. Gordon, and A. J. Martin, "Qualitative analysis of proteins: a partition chromatographic method using paper," Biochem J, vol. 38, pp. 224-32, 1944.
[43] G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, "Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey," Anal Bioanal Chem, vol. 393, pp. 569-82, Jan 2009.
[44] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays," Angew Chem Int Ed Engl, vol. 46, pp. 1318-20, 2007.
[45] M. Sher, R. Zhuang, U. Demirci, and W. Asghar, "Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms," Expert Rev Mol Diagn, vol. 17, pp. 351-366, Apr 2017.
[46] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, and C. T. Culbertson, "Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva," Anal Bioanal Chem, vol. 397, pp. 1821-9, Jul 2010.
[47] K. Abe, K. Kotera, K. Suzuki, and D. Citterio, "Inkjet-printed paperfluidic immuno-chemical sensing device," Anal Bioanal Chem, vol. 398, pp. 885-93, Sep 2010.
[48] X. Li, J. Tian, G. Garnier, and W. Shen, "Fabrication of paper-based microfluidic sensors by printing," Colloids Surf B Biointerfaces, vol. 76, pp. 564-70, Apr 1 2010.
[49] X. Li, J. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment," Anal Chem, vol. 80, pp. 9131-4, Dec 1 2008.
[50] G. Chitnis, Z. Ding, C. L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab Chip, vol. 11, pp. 1161-5, Mar 21 2011.
[51] Y. Sameenoi, P. N. Nongkai, S. Nouanthavong, C. S. Henry, and D. Nacapricha, "One-step polymer screen-printing for microfluidic paper-based analytical device (muPAD) fabrication," Analyst, vol. 139, pp. 6580-8, Dec 21 2014.
[52] T. Nurak, N. Praphairaksit, and O. Chailapakul, "Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water," Talanta, vol. 114, pp. 291-6, Sep 30 2013.
[53] Y. Lu, W. Shi, J. Qin, and B. Lin, "Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing," Anal Chem, vol. 82, pp. 329-35, Jan 1 2010.
[54] S. Altundemir, A. K. Uguz, and K. Ulgen, "A review on wax printed microfluidic paper-based devices for international health," Biomicrofluidics, vol. 11, p. 041501, Jul 2017.
[55] K. Li, D. Zhang, H. Bian, C. Meng, and Y. Yang, "Criteria for Applying the Lucas-Washburn Law," Sci Rep, vol. 5, p. 14085, Sep 14 2015.
[56] A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, 3rd, H. Sindi, and G. M. Whitesides, "Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis," Anal Chem, vol. 80, pp. 3699-707, May 15 2008.
[57] J. Dutta, S. Ahn, and Q. Li, "Quantitative statistical methods for image quality assessment," Theranostics, vol. 3, pp. 741-56, Oct 4 2013.
[58] X. Li, D. R. Ballerini, and W. Shen, "A perspective on paper-based microfluidics: Current status and future trends," Biomicrofluidics, vol. 6, pp. 11301-1130113, Mar 2012.
[59] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proc Natl Acad Sci U S A, vol. 105, pp. 19606-11, Dec 16 2008.
[60] D. S. Lee, B. G. Jeon, C. Ihm, J. K. Park, and M. Y. Jung, "A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader," Lab Chip, vol. 11, pp. 120-6, Jan 7 2011.
[61] P. D. Josephy, T. Eling, and R. P. Mason, "The horseradish peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates," J Biol Chem, vol. 257, pp. 3669-75, Apr 10 1982.
[62] W. Dungchai, O. Chailapakul, and C. S. Henry, "Use of multiple colorimetric indicators for paper-based microfluidic devices," Anal Chim Acta, vol. 674, pp. 227-33, Aug 3 2010.
[63] J. Lan, W. Xu, Q. Wan, X. Zhang, J. Lin, J. Chen, et al., "Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles," Anal Chim Acta, vol. 825, pp. 63-8, May 12 2014.
[64] J. Kreit, G. Lefebvre, A. Elhichami, P. Germain, and M. Saghi, "A colorimetric assay for measuring cell-free and cell-bound cholesterol oxidase," Lipids, vol. 27, pp. 458-65, Jun 1992.
[65] A. Sols and G. De La Fuente, "[Glucose oxidase as an analytic reagent]," Rev Esp Fisiol, vol. 13, pp. 231-45, Dec 1957.
[66] G. L. Ellman, K. D. Courtney, V. Andres, Jr., and R. M. Feather-Stone, "A new and rapid colorimetric determination of acetylcholinesterase activity," Biochem Pharmacol, vol. 7, pp. 88-95, Jul 1961.
[67] T. H. Yen, K. H. Chen, M. Y. Hsu, S. T. Fan, Y. F. Huang, C. L. Chang, et al., "Reprint of 'Evaluating organophosphate poisoning in human serum with paper'," Talanta, vol. 145, pp. 66-72, Dec 1 2015.
[68] G. G. Morbioli, T. Mazzu-Nascimento, A. M. Stockton, and E. Carrilho, "Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (muPADs) - A review," Anal Chim Acta, vol. 970, pp. 1-22, Jun 1 2017.
[69] R. Wilson, "The use of gold nanoparticles in diagnostics and detection," Chem Soc Rev, vol. 37, pp. 2028-45, Sep 2008.
[70] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Anal Chem, vol. 81, pp. 7091-5, Aug 15 2009.
[71] N. Lopez-Ruiz, V. F. Curto, M. M. Erenas, F. Benito-Lopez, D. Diamond, A. J. Palma, et al., "Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices," Anal Chem, vol. 86, pp. 9554-62, Oct 7 2014.
[72] M. Yasuhara, S. Fujita, K. Arisue, K. Kohda, and C. Hayashi, "A new enzymatic method to determine creatine," Clin Chim Acta, vol. 122, pp. 181-8, Jul 1 1982.
[73] D. M. Harraz and J. T. Davis, "A self-assembled peroxidase from 5'-GMP and heme," Chem Commun (Camb), vol. 54, pp. 1587-1590, Feb 14 2018.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *