帳號:guest(18.218.3.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):任怡昕
作者(外文):Jen, I-Hsin
論文名稱(中文):以奈米複合水膠系統作為一氧化氮緩釋載體 並結合光熱療法應用於乳癌新穎治療策略
論文名稱(外文):Silk Fibroin Composite Hydrogel System as Long-Term NO-Releasing Platform and Photothermal Agent for Breast Cancer Combination Therapy
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):王潔
陳韻晶
魯才德
口試委員(外文):Wang, Jane
Chen, Yunching
Lu, Tsai-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:105038510
出版年(民國):108
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:一氧化氮光熱療法水膠乳癌
外文關鍵詞:Nitric OxidePhotothermal TherapyHydrogelBreast cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:126
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一氧化氮是氣體自由基,同時是參與諸多生理反應的氣體傳訊分子。一氧 化氮供體已經發展超過 150 年,然而半衰期短(-s ~ -hrs)、一氧化氮攜載量不足、 缺乏良好一氧化氮輸送系統,將限制一氧化氮供體在臨床上的進展,因此非常需 要有一氧化氮高攜載量、長期釋放一氧化氮的平台。
本研究中,我們以 RRE-MPTMS 為一氧化氮供體修飾在金屬奈米粒子的 表面,以 UV-VIS 光譜、TEM 和 EDS mapping 影像,觀察調整不同合成條件之 結果,證明合成出攜載一氧化氮供體的金屬奈米粒子(NO-HGN)。透過摻混奈米 粒子與絲素蛋白水溶液形成可注射的複合水膠 (SFS/NO-HGN),接著驗證 NO- HGN 的光熱能力能賦予複合水膠具有一樣的的熱能力,誘導複合水膠即時成膠。 最後測試複合水膠在 PBS 中的之一氧化氮緩釋能力,能持續釋放到 ~50 天。以 小鼠乳癌細胞株 4T1 進行細胞毒性測試,可以看到合併一氧化氮結合光熱的組 別對細胞毒殺效果最顯著。建立 balb/c 小鼠原位乳癌模型,將奈米複合水膠原 位注射於小鼠腫瘤,接著以近紅外光照射,藉由奈米複合水膠的光熱轉換能力提 高腫瘤區的溫度,使奈米複合水膠即時成膠。固定於腫瘤區的複合水膠能執行多 次光熱治療,抑制腫瘤生長;輔以一氧化氮在腫瘤區長期釋放,增加細胞凋亡之 傾向。
Nitric oxide, a free radical with short half-life, is a gasotransmitter known for its diverse physiological functions throughout living organisms. Several NO donors have been developed for over 150 years. Unfortunately, limited NO payloads, too rapid NO release (-s ~ -hrs), and the lack of targeted NO delivery have hindered the clinical utility of NO donor compounds. High-payload, long-term NO-releasing platforms to improve its pharmacological potential are in need.
Herein, we attempt to develop a novel injectable hydrogel system for breast cancer combination therapy by hybridizing NO-functionalized hollow gold nanoparticles (NO- HGN) into SF solution. First, we synthesized HGNs (photothermal reagent) and modified them with a novel NO donor, dinitrosyl iron complex (DNIC) through the silane condensation reaction. Silane-premodified DNIC undergoes silanization and forms DNIC/SiOx molecular layers on the surface of HGN. UV-VIS spectra, TEM image, and EDS mapping of NO-HGN demonstrated the NO-donors were successfully loaded on to the nanoparticles. We also validated the light-induced gelation performance and NO sustained release profiles of composite silk fibroin hydrogel (SFG/ NO-HGN). At 50 ̊C, the gel formed in-situ within 5 min due to the light-heating induced sol-gel transition; yet at 37 ̊C (mimic physiological environment) still kept the original solution state within 30 min. Our SFG/NO-HGN system exhibits strong NIR- absorbance and thus displays excellent photothermal ability, originated from the extinctive surface plasmon resonance of the nanoparticles. With the outstanding durability and thermal stability, the composite hydrogel maintained similar temperature changes (> 25 ̊C) throughout 10-cycle irradiation. Following, we found that the NO- releasing profile of the composite hydrogel was temperature-dependent. More importantly, the sustained release duration of NO was drastically reached over 50 days,
2
especially compared to a very short lifetime for free Iron-Sulfur Cluster Nitrosyls (~1h). Moreover, the cytotoxicity of the composite hydrogel upon 4T1 breast cancer cells was evaluated. Finally, an orthotopic female BABL/c mice model was used to evaluate the in vivo efficacy. The SFS/NO-HGN solution was intratumorally injected into the mice bearing with 4T1 breast cancer and followed by laser irradiation. The light-induced heat from the SFS/NO-HGN would increase the local temperature and induced in situ formation of SFG/NO-HGN. Our preliminary data shows that we could conduct multiple treatments with the composite hydrogel.
目錄
摘要 ............................................................................................................................... 1
Abstract ......................................................................................................................... 2
縮寫表 ........................................................................................................................... 4
圖目錄 ........................................................................................................................... 8
第一章、緒論 ............................................................................................................. 12
1.1 研究動機...................................................................................................... 12
1.2 論文架構...................................................................................................... 13
第二章、文獻回顧 ..................................................................................................... 14
2.1 一氧化氮 (Nitric Oxide, NO) .......................................................................... 14
2.1.1 一氧化氮與調控機制 ................................................................................ 14
2.1.2 一氧化氮與癌症 ........................................................................................ 16
2.2 一氧化氮供體 (Nitric Oxide Donor, NO Donor) .......................................... 19
2.2.1 有機硝酸鹽Organic Nitrates (R-ONO2) ............................................... 19
2.2.2 N-diazeniumdiolate (NONOate) ............................................................ 21
2.2.3 亞硝基硫醇Nitrosothiols (RSNOs) ......................................................... 21
2.2.4 雙亞硝基鐵錯合物Dinitrosyl Iron Thiol Complexs (DNICs) .............. 22
2.3 不同的一氧化氮載體/輸送系統與其釋放機制 .............................................. 24
2.3.1 微脂體 ......................................................................................................... 25
2.3.2 二氧化矽奈米粒子 (Silica Nanoparticle) ................................................ 26
2.3.3 金屬奈米粒子 (Metal Nanoparticle) ....................................................... 28
2.4 一氧化氮載體/高分子複合物 (polymer Hybrid) ......................................... 31
2.5 絲素蛋白水膠之簡介 ........................................................................................ 33
第三章、以奈米複合水膠系統作為一氧化氮緩釋載體並結合光熱療法應用於乳
癌新穎治療策略 ......................................................................................................... 36
3.1 研究目的 ........................................................................................................... 36
3.2 研究材料與方法 ................................................................................................ 37
3.3 研究結果與討論 ............................................................................................... 45
7
3.3.1 NO-HGN 奈米粒子 .................................................................................... 45
3.3.2 NO-HGN 奈米粒子的光熱性質 ............................................................. 49
3.3.3 NO-HGN 誘導複合水膠成膠及複合水膠之特性分析 ......................... 51
3.3.4 複合水膠之一氧化氮緩慢釋放能力 ...................................................... 53
3.3.5 細胞之光熱治療 ...................................................................................... 57
3.3.6 動物實驗 .................................................................................................. 58
第四章、總結 ............................................................................................................. 64
參考文獻 ..................................................................................................................... 65
1 Pant, J., Goudie, M. J., Hopkins, S. P., Brisbois, E. J. & Handa, H. Tunable Nitric Oxide Release from S-Nitroso-N-acetylpenicillamine via Catalytic Copper Nanoparticles for Biomedical Applications. Acs Appl Mater Inter 9, 15254- 15264, doi:10.1021/acsami.7b01408 (2017).
2 Wang, P. G. et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev 102, 1091-1134 (2002).
3 Brisbois, E. J. et al. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep. J Mater Chem B 3, 1639-1645, doi:10.1039/C4TB02036G (2015).
4 Naik, V. V., Crobu, M., Venkataraman, N. V. & Spencer, N. D. Multiple Transmission-Reflection IR Spectroscopy Shows that Surface Hydroxyls Play Only a Minor Role in Alkylsilane Monolayer Formation on Silica. J Phys Chem Lett 4, 2745-2751, doi:10.1021/jz401440d (2013).
5 Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 16, 1792-1798, doi:DOI 10.1096/fj.02-0211hyp (2002).
6 Tare, M., Parkington, H. C., Coleman, H. A., Neild, T. O. & Dusting, G. J. Hyperpolarization and Relaxation of Arterial Smooth-Muscle Caused by Nitric- Oxide Derived from the Endothelium. Nature 346, 69-71, doi:DOI 10.1038/346069a0 (1990).
7 Nathan, C. F. & Hibbs, J. B. Role of Nitric-Oxide Synthesis in Macrophage Antimicrobial Activity. Curr Opin Immunol 3, 65-70, doi:Doi 10.1016/0952- 7915(91)90079-G (1991).
8 Bogdan, C. Nitric oxide and the immune response. Nat Immunol 2, 907-916, doi:DOI 10.1038/ni1001-907 (2001).
9 Davis, K. L., Martin, E., Turko, I. V. & Murad, F. Novel effects of nitric oxide. Annu Rev Pharmacol 41, 203-236, doi:DOI 10.1146/annurev.pharmtox.41.1.203 (2001).
10 Szabolcs, M. J. et al. Acute cardiac allograft rejection in nitric oxide synthase- 2(-/)- and nitric oxide synthase-2(+/)+ mice - Effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 103, 2514-2520 (2001).
11 Melino, G., Catani, M. V., Corazzari, M., Guerrieri, P. & Bernassola, F. Nitric oxide can inhibit apoptosis or switch it into necrosis. Cell Mol Life Sci 57, 612- 622, doi:Doi 10.1007/Pl00000723 (2000).
12 Lancaster, J. R. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide-Biol Ch 1, 18-30, doi:DOI 10.1006/niox.1996.0112 (1997).
13 Clark, R. H. et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. New Engl J Med 342, 469-474, doi:Doi 10.1056/Nejm200002173420704 (2000).
14 Miller, M. R. & Wadsworth, R. M. Understanding organic nitrates - a vein hope? Brit J Pharmacol 157, 565-567, doi:10.1111/j.1476-5381.2009.00193.x (2009).
15 Huerta, S., Chilka, S. & Bonavida, B. Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol 33, 909-927 (2008).
16 Blaise, G. A., Gauvin, D., Gangal, M. & Authier, S. Nitric oxide, cell signaling and cell death. Toxicology 208, 177-192, doi:10.1016/j.tox.2004.11.032 (2005).
17 Fukumura, D., Kashiwagi, S. & Jain, R. K. The role of nitric oxide in tumour progression. Nat Rev Cancer 6, 521-534, doi:10.1038/nrc1910 (2006).
18 Orucevic, A. et al. Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer 81, 889- 896, doi:Doi 10.1002/(Sici)1097-0215(19990611)81:6<889::Aid-Ijc9>3.0.Co;2- 2 (1999).
19 Jadeski, L. C., Chakraborty, C. & Lala, P. K. Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106, 496-504, doi:10.1002/ijc.11268 (2003).
20 Siegert, A., Rosenberg, C., Schmitt, W. D., Denkert, C. & Hauptmann, S. Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Brit J Cancer 86, 1310-1315, doi:10.1038/sj/bjc/6600224 (2002).
21 Zhang, X. M. & Xu, Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res 11, 559-567, doi:Doi 10.1097/00008390-200112000-00002 (2001).
22 Ambs, S. et al. P53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med 4, 1371-1376, doi:Doi 10.1038/3957 (1998).
23 Jenkins, D. C. et al. Roles of Nitric-Oxide in Tumor-Growth. P Natl Acad Sci USA 92, 4392-4396, doi:DOI 10.1073/pnas.92.10.4392 (1995).
65
24 Juang, S. H. et al. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther 9, 845-854, doi:DOI 10.1089/hum.1998.9.6-845 (1998).
25 Le, X. D., Wei, D. Y., Huang, S. Y., Lancaster, J. R. & Xie, K. P. Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. P Natl Acad Sci USA 102, 8758-8763, doi:DOI 10.1073/pnas.0409581102 (2005).
26 Shi, Q. et al. Direct correlation between nitric oxide synthase II inducibility and metastatic ability of UV-2237 murine fibrosarcoma cells carrying mutant p53. Cancer Res 59, 2072-2075 (1999).
27 Dong, Z. Y. et al. Activation of inducible nitric oxide synthase gene in murine macrophages requires protein phosphatases 1 and 2A activities. J Leukocyte Biol 58, 725-732 (1995).
28 Liu, C. Y. et al. Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Brit J Cancer 78, 534-541, doi:DOI 10.1038/bjc.1998.528 (1998).
29 Muerkoster, S. et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and in terleukin-1 beta. Cancer Res 64, 1331-1337, doi:Doi 10.1158/0008-5472.Can-03-1860 (2004).
30 Wei, D. Y. et al. Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res 63, 3855- 3859 (2003).
31 Shi, Q. et al. Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res 60, 2579-2583 (2000).
32 Jones, M. K., Tsugawa, K., Tarnawski, A. S. & Baatar, D. Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem Bioph Res Co 318, 520-528, doi:10.1016/j.bbrc.2004.04.055 (2004).
33 Ridnour, L. A. et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. P Natl Acad Sci USA 102, 13147-13152, doi:10.1073/pnas.0502979102 (2005).
34 Baker, J. W. & Heggs, T. G. Organic Nitrates. Chem Ind-London, 464-464 (1954).
35 Parker, J. D. & Parker, J. O. Nitrate therapy for stable angina pectoris. New Engl J Med 338, 520-531 (1998).
36 Griesberger, M. et al. Bioactivation of Pentaerythrityl Tetranitrate by Mitochondrial Aldehyde Dehydrogenase. Mol Pharmacol 79, 541-548, doi:10.1124/mol.110.069138 (2011).
37 Drago, R. S. & Paulik, F. E. The Reaction of Nitrogen(Ii) Oxide with Diethylamine. J Am Chem Soc 82, 96-98, doi:DOI 10.1021/ja01486a021 (1960).
38 Keefer, L. K. Fifty Years of Diazeniumdiolate Research. From Laboratory Curiosity to Broad-Spectrum Biomedical Advances. Acs Chem Biol 6, 1147- 1155, doi:10.1021/cb200274r (2011).
39 Greene, F. D. & Gilbert, K. E. Cyclic Azo Dioxides - Preparation, Properties, and Consideration of Azo Dioxide Nitrosoalkane Equilibria. J Org Chem 40, 1409- 1415, doi:DOI 10.1021/jo00898a007 (1975).
40 Davies, K. M., Wink, D. A., Saavedra, J. E. & Keefer, L. K. Chemistry of the diazeniumdiolates. 2. Kinetics and mechanism of dissociation to nitric oxide in aqueous solution. J Am Chem Soc 123, 5473-5481, doi:10.1021/ja002899q (2001).
41 Singh, R. J., Hogg, N., Joseph, J. & Kalyanaraman, B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271, 18596-18603 (1996).
42 Mancuso, C., Bonsignore, A., Di Stasio, E., Mordente, A. & Motterlini, R. Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem Pharmacol 66, 2355-2363, doi:10.1016/j.bcp.2003.08.022 (2003).
43 Mallard, J. R. & Kent, M. Electron Spin Resonance in Surviving Rat Tissues. Nature 210, 588-&, doi:DOI 10.1038/210588a0 (1966).
44 Woolum, J. C., Tiezzi, E. & Commoner, B. Electron Spin Resonance of Iron- Nitric Oxide Complexes with Amino Acids Peptides and Proteins. Biochim Biophys Acta 160, 311-&, doi:Doi 10.1016/0005-2795(68)90204-3 (1968).
45 Hickok, J. R. et al. Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radical Bio Med 51, 1558-1566, doi:10.1016/j.freeradbiomed.2011.06.030 (2011).
46 Toledo, J. C. et al. Nitric Oxide-induced Conversion of Cellular Chelatable Iron into Macromolecule-bound Paramagnetic Dinitrosyliron Complexes. Journal of Biological Chemistry 283, 28926-28933, doi:10.1074/jbc.M707862200 (2008).
47 Rahmanto, Y. S. et al. Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by
Interacting Proteins. Journal of Biological Chemistry 287, 6960-6968,
doi:10.1074/jbc.R111.329847 (2012).
48 Yang, J. J., Duan, X. W., Landry, A. P. & Ding, H. G. Oxygen is required for the L-
cysteine-mediated decomposition of protein-bound dinitrosyl-iron complexes. Free Radical Bio Med 49, 268-274, doi:10.1016/j.freeradbiomed.2010.04.012 (2010).
49 Hickok, J. R. et al. Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radic Biol Med 51, 1558-1566, doi:10.1016/j.freeradbiomed.2011.06.030 (2011).
50 Prince, R. C. & Grossman, M. J. Novel iron-sulfur clusters. Trends Biochem Sci 18, 153-154 (1993).
51 Bladon, P. et al. Amination of Complexed Carbon-Monoxide by N- Nitrosamines - Syntheses and Structures of Iron Carbonyl and Nitrosyl Complexes and Applications to Heterocyclic Synthesis. Organometallics 12, 1725-1741, doi:DOI 10.1021/om00029a034 (1993).
52 Conrado, C. L., Bourassa, J. L., Egler, C., Wecksler, S. & Ford, P. C. Photochemical investigation of Roussin's red salt esters: Fe2(mu-SR)2(NO)4. Inorg Chem 42, 2288-2293, doi:10.1021/ic020309e (2003).
53 Chen, Y. J. et al. Nitric oxide physiological responses and delivery mechanisms probed by water-soluble Roussin's red ester and {Fe(NO)(2)}(10) DNIC. J Am Chem Soc 130, 10929-10938, doi:10.1021/ja711494m (2008).
54 Bourassa, J. et al. Photochemistry of Roussin's red salt, Na-2[Fe2S2(NO)4], and of Roussin's black salt, NH4[Fe4S3(NO)7]. In situ nitric oxide generation to sensitize gamma-radiation induced cell death. J Am Chem Soc 119, 2853- 2860, doi:DOI 10.1021/ja963914n (1997).
55 Huang, H. W. et al. Extension of C-elegans lifespan using the center dot NO- delivery dinitrosyl iron complexes. J Biol Inorg Chem 23, 775-784, doi:10.1007/s00775-018-1569-1 (2018).
56 Suchyta, D. J. & Schoenfisch, M. H. Controlled Release of Nitric Oxide from Liposomes. Acs Biomater Sci Eng 3, 2136-2143, doi:10.1021/acsbiomaterials.7b00255 (2017).
57 Huang, S. L. et al. A novel gateway for vascular drug delivery: Controlled release of nitric oxide from echogenic liposomes. J Am Coll Cardiol 51, A344- A344 (2008).
58 Duong, H. T. T. et al. Nanoparticle (Star Polymer) Delivery of Nitric Oxide Effectively Negates Pseudomonas aeruginosa Biofilm Formation. Biomacromolecules 15, 2583-2589, doi:10.1021/bm500422v (2014).
59 Choi, H. W. et al. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery. Acs Nano 10, 4199-4208, doi:10.1021/acsnano.5b07483 (2016).
60 Polizzi, M. A., Stasko, N. A. & Schoenfisch, M. H. Water-soluble nitric oxide- releasing gold nanoparticles. Langmuir 23, 4938-4943, doi:10.1021/la0633841 (2007).
61 Tan, L., Huang, R., Li, X., Liu, S. & Shen, Y. M. Controllable release of nitric oxide and doxorubicin from engineered nanospheres for synergistic tumor therapy. Acta Biomater 57, 498-510, doi:10.1016/j.actbio.2017.05.019 (2017).
62 Deepagan, V. G. et al. Intracellularly Activatable Nanovasodilators To Enhance Passive Cancer Targeting Regime. Nano Lett 18, 2637-2644, doi:10.1021/acs.nanolett.8b00495 (2018).
63 Soto, R. J., Merricks, E. P., Bellinger, D. A., Nichols, T. C. & Schoenfisch, M. H. Influence of diabetes on the foreign body response to nitric oxide-releasing implants. Biomaterials 157, 76-85, doi:10.1016/j.biomaterials.2017.11.044 (2018).
64 Mathai, J. C., Tristram-Nagle, S., Nagle, J. F. & Zeidel, M. L. Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131, 69-76, doi:10.1085/jgp.200709848 (2008).
65 Rink, J. S. et al. Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. Acs Appl Mater Inter 10, 6904-6916, doi:10.1021/acsami.7b18525 (2018).
66 Zhang, H. et al. Nitric oxide-releasing fumed silica particles: synthesis, characterization, and biomedical application. J Am Chem Soc 125, 5015-5024, doi:10.1021/ja0291538 (2003).
67 Shin, J. H., Metzger, S. K. & Schoenfisch, M. H. Synthesis of nitric oxide- releasing silica nanoparticles. J Am Chem Soc 129, 4612-4619, doi:10.1021/ja0674338 (2007).
68 Riccio, D. A., Nugent, J. L. & Schoenfisch, M. H. Stober Synthesis of Nitric Oxide-Releasing S-Nitrosothiol-Modified Silica Particles. Chem Mater 23, 1727-1735, doi:10.1021/cm102510q (2011).
69 Soto, R. J., Yang, L. & Schoenfisch, M. H. Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release. ACS Appl Mater Interfaces 8, 2220-2231, doi:10.1021/acsami.5b10942 (2016).
70 Rothrock, A. R., Donkers, R. L. & Schoenfisch, M. H. Synthesis of nitric oxide- releasing gold nanoparticles. J Am Chem Soc 127, 9362-9363, doi:10.1021/ja052027u (2005).
71 Stasko, N. A. & Schoenfisch, M. H. Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc 128, 8265-8271, doi:10.1021/ja060875z (2006).
72 Schulz-Dobrick, M., Sarathy, K. V. & Jansen, M. Surfactant-free synthesis and functionalization of gold nanoparticles. J Am Chem Soc 127, 12816-12817, doi:10.1021/ja054734t (2005).
73 Frost, M. C., Reynolds, M. M. & Meyerhoff, M. E. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 26, 1685-1693, doi:10.1016/j.biomaterials.2004.06.006 (2005).
74 Frost, M. & Meyerhoff, M. E. In vivo chemical sensors: tackling biocompatibility. Anal Chem 78, 7370-7377 (2006).
75 Robbins, M. E., Hopper, E. D. & Schoenfisch, M. H. Synthesis and characterization of nitric oxide-releasing sol-gel microarrays. Langmuir 20, 10296-10302, doi:10.1021/la048368n (2004).
76 Nablo, B. J. & Schoenfisch, M. H. Poly(vinyl chloride)-coated sol-gels for studying the effects of nitric oxide release on bacterial adhesion. Biomacromolecules 5, 2034-2041, doi:10.1021/bm049727w (2004).
77 Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6, 1612-1631, doi:10.1038/nprot.2011.379 (2011).
78 Cao, Y. & Wang, B. Biodegradation of silk biomaterials. Int J Mol Sci 10, 1514- 1524, doi:10.3390/ijms10041514 (2009).
79 Seib, F. P., Pritchard, E. M. & Kaplan, D. L. Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 23, 58-65, doi:10.1002/adfm.201201238 (2013).
80 Matsumoto, A. et al. Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 110, 21630-21638, doi:10.1021/jp056350v (2006).
81 Li, W. P. et al. Controllable CO Release Following Near Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO- Assisted Synergistic Treatment. Acs Nano 10, 11027-11036, doi:10.1021/acsnano.6b05858 (2016).
82 Li, H. J. et al. Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. Acs Nano 10, 6753-6761, doi:10.1021/acsnano.6b02326 (2016).
83 Kanamala, M., Wilson, W. R., Yang, M., Palmer, B. D. & Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 85, 152-167, doi:10.1016/j.biomaterials.2016.01.061 (2016).
84 Sowa, I. et al. Evaluation of pH and thermal stability of sorbent based on silica modified with polyaniline using high-resolution continuum source graphite furnace atomic absorption spectrometry and Raman spectroscopy. Microchem J 118, 88-94, doi:10.1016/j.microc.2014.08.009 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *