帳號:guest(18.118.193.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡哲永
作者(外文):Chien, Che-Yung
論文名稱(中文):雙股核苷酸非同源末端黏合與同源重組之生物冷光偵測平台
論文名稱(外文):Bioluminescence Repair Reporter (BLRR): A platform for NHEJ and HDR detection.
指導教授(中文):賴品光
鄭兆珉
指導教授(外文):Lai, Pin-Kuang
Cheng, Chao-Min
口試委員(中文):冀宏源
徐欣伶
口試委員(外文):Chi, Hung-Yuan
Hsu, Hsin-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:105038509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:74
中文關鍵詞:基因編輯生物冷光同源重組非同源末端黏合
外文關鍵詞:Genome editingBioluminescenceHDRNHEJ
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,基因編輯 (genome editing) 的研究領域與工具開發獲得了重大的突破與發展,能達到精準的基因編輯的效果。為了更有效的利用基因編輯工具,必須了解影響基因編輯與基因修復的關鍵因子,然而現行的檢驗方法相當繁瑣與耗時,主要可分為: 1. 萃取出細胞的基因體DNA,利用PCR (polymerase chain reaction, PCR) 的方法放大目標序列後,分析目標序列的突變情形; 2. 利用特殊的報導基因,並透過報導基因的表現確認編輯效果; 3. 利用桑格定序 (Sanger sequencing) 或次世代定序 (Next Generation Sequencing, NGS) 的方式直接對目標序列進行定序。在2011年時,有團隊研究出 "Traffic-Light Reporter"1,能夠分辨細胞在利用基因編輯工具產生雙股核酸斷裂 (Double-strand break, DSB) 後的修復情形; 透過流式細胞儀 (Fluorescence Activated Cell Sorter, FACS) ,觀測基因編輯後的HDR (Homology-Directed Repair, HDR) 修復的GFP訊號及NHEJ (Non-homologous end join, NHEJ) 後移碼突變 (frameshift) 產生的mCherry訊號。然而流式細胞儀檢測方法十分地耗時且必須犧牲細胞進行檢測,無法長時間追蹤基因修復後的情況。
本實驗研發出生物冷光修復報導基因(bioluminescence repair reporter, BLRR) 。利用分泌型態 (secreted type) 生物冷光酶Vargula luciferase以及Gaussia luciferase,在不犧牲細胞的情況下,簡易且快速地得知基因修復途徑,並且可以利用相同的細胞進行接續的實驗分析。透過BLRR的訊號與NGS定序的結果相比,顯示出BLRR能夠反應出隨時間變化的基因編輯與基因修復情形,且能夠檢測出最低1.23 ± 0.32% 的HDR比例,與14.7 ± 1.41% 的NHEJ比例,和一般常用的酶突變剪切法 ( Enzyme Mismatch Cleavage assay, EMC assay) 相近。同時亦能夠反應出藥物和化合物所造成的基因修復情形改變,證明BLRR為一個簡易、高成本效益、快速且靈敏的基因編輯檢測平台。
In recent year, there are major breakthroughs in the development of genome editing tools developing. Understanding the mechanism and the key factors behind genome editing could increase the performance of these tools. However, current methods for verifying genome editing results are labor intensive. These methods can be characterized into: 1) extracting genome from cells and using PCR to amplify target sequence for analyzing; 2) using a reporter gene to evaluate editing efficiency, and; 3) using sequencing methods such as Sanger sequencing or NGS to analyze target sequences. In 2011, a team developed a reporter, traffic light reporter, that can be used for determining genome editing repair by FACS. In NHEJ, the cell expressing traffic light reporter will express mCherry due to frameshift mutation; while in HDR, the cell will repair GFP sequence. Although traffic light reporter can determine genome editing outcomes easily, the requirement of collecting cells before FACS is time-consuming and does not allow high-throughput sampling.
In this research, we report a bioluminescence repair reporter, BLRR, as a new reporter platform for detecting genome editing outcomes. Using secret types of bioluminescence, Vargula luciferase and Gaussia luciferase, we are able to develop a high-throughput method to understand the genome editing results without sacrificing cells. Comparing BLRR signal with NGS result from the same groups of cells, BLRR signal can be used to observe time-dependent genome editing events and can detect as low as 1.23 ± 0.32% of HDR and 14.7 ± 1.41% of NHEJ events, same as commonly used method such as EMC assay. BLRR also can reveal the effect of the drug on genome editing events. Together, BLRR is a highly sensitive, cost-effective and high-throughput platform for genome editing events monitoring.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VI
縮寫表 VII
第一章、 文獻探討 1
1.1 生物冷光 (BIOLUMINESCENCE) 1
1.2基因修復 2
1.2.1 非同源性末端接合 (Nonhomologous End Joining, NHEJ) 3
1.2.2 同源重組 (Homology-Directed Repair, HDR) 6
1.3 基因編輯工具 (GENOME EDITING TOOLS) 8
1.3.1巨大限制酶 (Meganucleases) 8
1.3.2 鋅手指核酸剪切酶 (zinc finger nucleases,ZFNs) 9
1.3.3 轉錄激活樣效應因子核酸酶 (Transcription Activator-like Effector Nucleases, TALEN) 10
1.3.4常間回文重複序列叢集/常間回文重複序列叢集關聯蛋白系統 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins,CRISPR/Cas system) 12
1.4 基因編輯結果檢測 14
1.4.1 聚合反應分析方法 (PCR-based method) 14
1.4.2報導基因 (Reporter-based method) 18
1.4.3 定序分析 (Sequencing method) 19
第二章、 研究動機 26
第三章、 實驗方法 27
3.1. 實驗材料 27
3-1-1.化學藥品及試劑 27
3-1-2. 儀器 29
3.2 質體建構 31
3.3 細菌形質轉換 (BACTERIAL TRANSFORMATION) 31
3.4 限制酶剪切 32
3.5 細胞培養 32
3.6 細胞轉染 (TRANSFECTION) 33
3.7 BLRR慢病毒生產 (LENTIVIRAL PRODUCTION) 33
3.8 BLRR5穩定型細胞株 (STABLE CLONE) 建立 33
3.9 GLUC訊號強度分析 34
3.10 VLUC訊號強度分析 35
3.11 細胞活性訊號分析 35
3.12 T7E1 內切酶分析 35
3.13 TIDE 和TIDER分析 36
3.14 次世代定序分析 36
3.15 西方點墨法分析 36
第四章、 實驗結果 38
4.1 質體建構 38
4.2 BLRR 功能測驗 41
4.3 BLRR檢測極限分析 45
4.4 藥物檢測步驟優化 48
4.5 BLRR5 細胞定性測試 52
第五章、 討論 62
第六章、 參考資料 66
1. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. 8, (2011).
2. Kaskova, Z. M., Tsarkova, A. S. &Yampolsky, I.V. Chem Soc Rev chemical analysis , biology and medicine. Chem. Soc. Rev. 45, 6048–6077 (2016).
3. Hulleman, J. D., Brown, S. J., Rosen, H. &Kelly, J. W. A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. J. Biomol. Screen. 18, 647–58 (2013).
4. Osamu, B. Cypridina Luciferin. (1957).
5. Verhaegent, M. &Christopoulos, T. K. Recombinant Gaussia luciferase: Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal. Chem. 74, 4378–4385 (2002).
6. Vieira, J., DaSilva, L. P. &DaSilva, J. C. G. E. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J. Photochem. Photobiol. B Biol. 117, 33–39 (2012).
7. England, C. G., Ehlerding, E. B. &Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug. Chem. 27, 1175–1187 (2016).
8. Thompson, J. F., Hayes, L. S. &Lloyd, D. B. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103, 171–177 (1991).
9. Corish, P. &Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12, 1035–1040 (1999).
10. Greer, L.F.; SZALAY, A. . Imaging of light emission fron the expression of liciferases in living cells and organisms: a review. Luminescence 43–74 (2002).
11. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).
12. Niers, J. M. et al. Single reporter for targeted multimodal in vivo imaging. J. Am. Chem. Soc. 134, 5149–5156 (2012).
13. NAKAJIMA, Y., KOBAYASHI, K., YAMAGISHI, K., ENOMOTO, T. &OHMIYA, Y. cDNA Cloning and Characterization of a Secreted Luciferase from the Luminous Japanese Ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 68, 565–570 (2004).
14. Charles, J. P. et al. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases. Nat. Commun. 5, 3981 (2014).
15. Wyman, C. &Kanaar, R. DNA Double-Strand Break Repair: All’s Well that Ends Well. Annual Review of Genetics 40, (2006).
16. Lieber, M. R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 79, 181–211 (2010).
17. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. &Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).
18. Hollstein, M., Sidransky, D., Vogelstein, B. &Harris, C. C. P53 Mutations in Human Cancers. 253, 49–53 (1991).
19. Gaj, T., Gersbach, C. A. &Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).
20. Mimori, T. &Hardin, J. A. Mechanism of interaction between Ku protein and DNA. J. Biol. Chem. 261, 10375–10379 (1986).
21. Nick McElhinny, S. A., Snowden, C. M., McCarville, J. &Ramsden, D. A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000).
22. Ochi, T. et al. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science (80-. ). 347, 185–188 (2015).
23. Pierce, A. J., Hu, P., Han, M., Ellis, N. &Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells service Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 3237–3242 (2001). doi:10.1101/gad.946401
24. Ma, Y., Schwarz, K. &Lieber, M. R. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst). 4, 845–851 (2005).
25. Ramadan, K., Shevelev, I.V., Maga, G. &Hübscher, U. De Novo DNA synthesis by human DNA polymerase λ, DNA polymerase μ and terminal deoxyribonucleotidyl transferase. J. Mol. Biol. 339, 395–404 (2004).
26. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).
27. Zhou, Y., Caron, P., Legube, G. &Paull, T. T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 42, (2014).
28. Nimonkar, A.V. et al. BLM‚ DNA2‚ RPA‚ MRN and EXO1‚ BLM‚ RPA‚ MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011).
29. Cejka, P. et al. DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature 467, 112–116 (2010).
30. Spies, M. &Kowalczykowski, S. C. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21, 573–580 (2006).
31. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).
32. Matos, J. &West, S. C. Holliday junction resolution: Regulation in space and time. DNA Repair (Amst). 19, 176–181 (2014).
33. Zhang, J.-P. et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35 (2017).
34. Wang, C. X. &Cannon, P. M. The clinical applications of genome editing in HIV. Blood 127, 2546–2552 (2016).
35. Pâques, F. &Duchateau, P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 7, 49–66 (2007).
36. Vader, A., Nielsen, H. &Johansen, S. In vivo expression of the nucleolar group I intron-encoded I-DirI homing endonuclease involves the removal of a spliceosomal intron. EMBO J. 18, 1003–1013 (1999).
37. Rouet, P., Smih, F. &Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–106 (1994).
38. Arnould, S. et al. Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. 443–458 (2006). doi:10.1016/j.jmb.2005.10.065
39. Kim, H. &Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).
40. Bibikova, M. et al. Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Mol. Cell. Biol. 21, 289–297 (2001).
41. Desjarlais, J. R. &Berg, J. M. Redesigning the DNA???binding specificity of a zinc finger protein: A data base???guided approach. Proteins Struct. Funct. Bioinforma. 12, 101–104 (1992).
42. Lomniczi, A. et al. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nat. Commun. 6, 10195 (2015).
43. Kim, H., Lee, H., Kim, H. &Cho, S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 1279–1288 (2009). doi:10.1101/gr.089417.108.19
44. Boch, J., Scholze, H., Schornack, S. &Landgraf, A. American Association for the Advancement of Science. 326, 20–21 (2009).
45. Li, Y. et al. Modular construction of mammalian gene circuits using {TALE} transcriptional repressors. Nat Chem Biol 11, 207–213 (2015).
46. Bogdanove, A. J. &Stoddard, B. L. No Title. 335, (2012).
47. Williams, C. et al. References and Notes 1. 1209–1214 (2012). doi:10.1126/science.1206034
48. Makarova, K. S., Grishin, N.V, Shabalina, S. A., Wolf, Y. I. &Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).
49. Shen, B. et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 23, 720–723 (2013).
50. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
51. Shen, Z. et al. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in c.elegans neural development. Dev. Cell 30, 625–636 (2014).
52. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. &Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).
53. Wyman, J. et al. References and Notes 1. 315, 819–824 (2013).
54. Gohlke, C., Murchie, A. I., Lilley, D. M. &Clegg, R. M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 91, 11660–11664 (1994).
55. Vouillot, L., Thélie, A. &Pollet, N. Comparison of T7E1 and Surveyor Mismatch Cleavage AssaysVouillot, L., Thélie, A., &Pollet, N. (2015). Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases, 5(March), 407–415. http://doi.org/10.1534. 5, 407–415 (2015).
56. Oleykowski, C. a, Bronson Mullins, C. R., Godwin, a K. &Yeung, a T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998).
57. Miyaoka, Y. et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 6, 1–12 (2016).
58. Lonowski, L. A. et al. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat. Protoc. 12, 581–603 (2017).
59. Yang, Z. et al. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res. 43, (2015).
60. Dahlem, T. J. et al. Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. PLoS Genet. 8, (2012).
61. Germini, D. et al. A Comparison of Techniques to Evaluate the Effectiveness of Genome Editing. Trends Biotechnol. xx, 1–13 (2017).
62. Słomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G. &Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int. J. Mol. Sci. 18, (2017).
63. Thomas, H. R., Percival, S. M., Yoder, B. K. &Parant, J. M. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 9, (2014).
64. Yu, C. et al. Small molecules enhance crispr genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).
65. Wen, Y. et al. A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. J. Biol. Chem. 292, 6148–6162 (2017).
66. Nihongaki, Y., Kawano, F., Nakajima, T. &Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33, 755–760 (2015).
67. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, 1–8 (2011).
68. Sanger, F. &Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).
69. Zischewski, J., Fischer, R. &Bortesi, L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol. Adv. 35, 95–104 (2017).
70. Brinkman, E. K., Chen, T., Amendola, M. &VanSteensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, (2014).
71. Brinkman, E. K. et al. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 46, (2018).
72. Goodwin, S., McPherson, J. D. &McCombie, W. R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
73. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. &Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
74. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).
75. Güell, M., Yang, L. &Church, G. M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014).
76. Galazka, A. &Grzadziel, J. The Molecular‐Based Methods Used for Studying Bacterial Diversity in Soils Contaminated with PAHs (The Review). Soil Contam. - Curr. Consequences Furth. Solut. 1–20 (2016). doi:10.5772/64772
77. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4, (2009).
78. Huang, F., Mazina, O. M., Zentner, I. J., Cocklin, S. &Mazin, A.V. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J. Med. Chem. 55, 3011–3020 (2012).
79. Robert, F., Barbeau, M., Éthier, S., Dostie, J. &Pelletier, J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7, 1–11 (2015).
80. Richardson, C. D., Ray, G. J., Dewitt, M. A., Curie, G. L. &Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. 34, (2016).
81. Wan, J. C. M. et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).
82. Li, M. et al. Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework. Nucleic Acids Res. 45, (2017).
83. Votintseva, A. A. et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285–1298 (2017).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *