|
1. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. 8, (2011). 2. Kaskova, Z. M., Tsarkova, A. S. &Yampolsky, I.V. Chem Soc Rev chemical analysis , biology and medicine. Chem. Soc. Rev. 45, 6048–6077 (2016). 3. Hulleman, J. D., Brown, S. J., Rosen, H. &Kelly, J. W. A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. J. Biomol. Screen. 18, 647–58 (2013). 4. Osamu, B. Cypridina Luciferin. (1957). 5. Verhaegent, M. &Christopoulos, T. K. Recombinant Gaussia luciferase: Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal. Chem. 74, 4378–4385 (2002). 6. Vieira, J., DaSilva, L. P. &DaSilva, J. C. G. E. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J. Photochem. Photobiol. B Biol. 117, 33–39 (2012). 7. England, C. G., Ehlerding, E. B. &Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug. Chem. 27, 1175–1187 (2016). 8. Thompson, J. F., Hayes, L. S. &Lloyd, D. B. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103, 171–177 (1991). 9. Corish, P. &Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12, 1035–1040 (1999). 10. Greer, L.F.; SZALAY, A. . Imaging of light emission fron the expression of liciferases in living cells and organisms: a review. Luminescence 43–74 (2002). 11. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015). 12. Niers, J. M. et al. Single reporter for targeted multimodal in vivo imaging. J. Am. Chem. Soc. 134, 5149–5156 (2012). 13. NAKAJIMA, Y., KOBAYASHI, K., YAMAGISHI, K., ENOMOTO, T. &OHMIYA, Y. cDNA Cloning and Characterization of a Secreted Luciferase from the Luminous Japanese Ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 68, 565–570 (2004). 14. Charles, J. P. et al. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases. Nat. Commun. 5, 3981 (2014). 15. Wyman, C. &Kanaar, R. DNA Double-Strand Break Repair: All’s Well that Ends Well. Annual Review of Genetics 40, (2006). 16. Lieber, M. R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 79, 181–211 (2010). 17. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. &Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017). 18. Hollstein, M., Sidransky, D., Vogelstein, B. &Harris, C. C. P53 Mutations in Human Cancers. 253, 49–53 (1991). 19. Gaj, T., Gersbach, C. A. &Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013). 20. Mimori, T. &Hardin, J. A. Mechanism of interaction between Ku protein and DNA. J. Biol. Chem. 261, 10375–10379 (1986). 21. Nick McElhinny, S. A., Snowden, C. M., McCarville, J. &Ramsden, D. A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000). 22. Ochi, T. et al. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science (80-. ). 347, 185–188 (2015). 23. Pierce, A. J., Hu, P., Han, M., Ellis, N. &Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells service Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 3237–3242 (2001). doi:10.1101/gad.946401 24. Ma, Y., Schwarz, K. &Lieber, M. R. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst). 4, 845–851 (2005). 25. Ramadan, K., Shevelev, I.V., Maga, G. &Hübscher, U. De Novo DNA synthesis by human DNA polymerase λ, DNA polymerase μ and terminal deoxyribonucleotidyl transferase. J. Mol. Biol. 339, 395–404 (2004). 26. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007). 27. Zhou, Y., Caron, P., Legube, G. &Paull, T. T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 42, (2014). 28. Nimonkar, A.V. et al. BLM‚ DNA2‚ RPA‚ MRN and EXO1‚ BLM‚ RPA‚ MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362 (2011). 29. Cejka, P. et al. DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature 467, 112–116 (2010). 30. Spies, M. &Kowalczykowski, S. C. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21, 573–580 (2006). 31. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003). 32. Matos, J. &West, S. C. Holliday junction resolution: Regulation in space and time. DNA Repair (Amst). 19, 176–181 (2014). 33. Zhang, J.-P. et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35 (2017). 34. Wang, C. X. &Cannon, P. M. The clinical applications of genome editing in HIV. Blood 127, 2546–2552 (2016). 35. Pâques, F. &Duchateau, P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 7, 49–66 (2007). 36. Vader, A., Nielsen, H. &Johansen, S. In vivo expression of the nucleolar group I intron-encoded I-DirI homing endonuclease involves the removal of a spliceosomal intron. EMBO J. 18, 1003–1013 (1999). 37. Rouet, P., Smih, F. &Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–106 (1994). 38. Arnould, S. et al. Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. 443–458 (2006). doi:10.1016/j.jmb.2005.10.065 39. Kim, H. &Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014). 40. Bibikova, M. et al. Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases. Mol. Cell. Biol. 21, 289–297 (2001). 41. Desjarlais, J. R. &Berg, J. M. Redesigning the DNA???binding specificity of a zinc finger protein: A data base???guided approach. Proteins Struct. Funct. Bioinforma. 12, 101–104 (1992). 42. Lomniczi, A. et al. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nat. Commun. 6, 10195 (2015). 43. Kim, H., Lee, H., Kim, H. &Cho, S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 1279–1288 (2009). doi:10.1101/gr.089417.108.19 44. Boch, J., Scholze, H., Schornack, S. &Landgraf, A. American Association for the Advancement of Science. 326, 20–21 (2009). 45. Li, Y. et al. Modular construction of mammalian gene circuits using {TALE} transcriptional repressors. Nat Chem Biol 11, 207–213 (2015). 46. Bogdanove, A. J. &Stoddard, B. L. No Title. 335, (2012). 47. Williams, C. et al. References and Notes 1. 1209–1214 (2012). doi:10.1126/science.1206034 48. Makarova, K. S., Grishin, N.V, Shabalina, S. A., Wolf, Y. I. &Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006). 49. Shen, B. et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 23, 720–723 (2013). 50. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013). 51. Shen, Z. et al. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in c.elegans neural development. Dev. Cell 30, 625–636 (2014). 52. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. &Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009). 53. Wyman, J. et al. References and Notes 1. 315, 819–824 (2013). 54. Gohlke, C., Murchie, A. I., Lilley, D. M. &Clegg, R. M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 91, 11660–11664 (1994). 55. Vouillot, L., Thélie, A. &Pollet, N. Comparison of T7E1 and Surveyor Mismatch Cleavage AssaysVouillot, L., Thélie, A., &Pollet, N. (2015). Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases, 5(March), 407–415. http://doi.org/10.1534. 5, 407–415 (2015). 56. Oleykowski, C. a, Bronson Mullins, C. R., Godwin, a K. &Yeung, a T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998). 57. Miyaoka, Y. et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 6, 1–12 (2016). 58. Lonowski, L. A. et al. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat. Protoc. 12, 581–603 (2017). 59. Yang, Z. et al. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res. 43, (2015). 60. Dahlem, T. J. et al. Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. PLoS Genet. 8, (2012). 61. Germini, D. et al. A Comparison of Techniques to Evaluate the Effectiveness of Genome Editing. Trends Biotechnol. xx, 1–13 (2017). 62. Słomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G. &Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int. J. Mol. Sci. 18, (2017). 63. Thomas, H. R., Percival, S. M., Yoder, B. K. &Parant, J. M. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 9, (2014). 64. Yu, C. et al. Small molecules enhance crispr genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015). 65. Wen, Y. et al. A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. J. Biol. Chem. 292, 6148–6162 (2017). 66. Nihongaki, Y., Kawano, F., Nakajima, T. &Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33, 755–760 (2015). 67. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, 1–8 (2011). 68. Sanger, F. &Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975). 69. Zischewski, J., Fischer, R. &Bortesi, L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol. Adv. 35, 95–104 (2017). 70. Brinkman, E. K., Chen, T., Amendola, M. &VanSteensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, (2014). 71. Brinkman, E. K. et al. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 46, (2018). 72. Goodwin, S., McPherson, J. D. &McCombie, W. R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016). 73. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. &Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013). 74. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016). 75. Güell, M., Yang, L. &Church, G. M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014). 76. Galazka, A. &Grzadziel, J. The Molecular‐Based Methods Used for Studying Bacterial Diversity in Soils Contaminated with PAHs (The Review). Soil Contam. - Curr. Consequences Furth. Solut. 1–20 (2016). doi:10.5772/64772 77. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4, (2009). 78. Huang, F., Mazina, O. M., Zentner, I. J., Cocklin, S. &Mazin, A.V. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J. Med. Chem. 55, 3011–3020 (2012). 79. Robert, F., Barbeau, M., Éthier, S., Dostie, J. &Pelletier, J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7, 1–11 (2015). 80. Richardson, C. D., Ray, G. J., Dewitt, M. A., Curie, G. L. &Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. 34, (2016). 81. Wan, J. C. M. et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017). 82. Li, M. et al. Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework. Nucleic Acids Res. 45, (2017). 83. Votintseva, A. A. et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285–1298 (2017).
|