帳號:guest(13.58.134.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卓庭煜
作者(外文):Chuo, Steven Ting-Yu
論文名稱(中文):多功能報導系統應用於胞外泌體的 分子顯影與蛋白質體分析
論文名稱(外文):A Multifunctional Reporter System for Visualization and Proteomics Analyses of Extracellular Vesicles
指導教授(中文):賴品光
陳韻晶
指導教授(外文):Lai, Charles Pin-Kuang
Chen, Yun-Ching
口試委員(中文):林玉俊
徐丞志
口試委員(外文):Lin, Yu-Chun
Hsu, Chen-Chih Richard
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:105038506
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:胞外泌體生物冷光共振能量轉移鄰近生物素化標定蛋白質體學分子影像
外文關鍵詞:extracellular vesiclesbioluminescence resonance energy transferproximal-dependent biotinylationEV proteomicsmolecular imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胞外泌體(extracellular vesicles, EVs)為細胞分泌的奈米級脂雙層囊泡,為細胞間距離溝通之工具,並且能夠攜帶DNA、RNA與蛋白質。受體細胞會以胞吞(endocytosis)、融合(fusion)、巨胞飲作用 (macropinocytosis)或是吞噬作用(phagocytosis)等等方式接收EVs與其攜帶的蛋白質與遺傳物質1。為了研究其所攜帶的蛋白質,科學家利用同量異位素標定,如 TMT (tandem mass tag) 2 或是以同位素標定,如SILAC (Stable Isotope Labeling with Amino Acids in Cell Cultures)3。然而2013年Alice Y. Ting團隊發表的APEX2對於標靶蛋白質體學有所突破,利用APEX2 活化生物素酚 (biotin phenol) 標定附近蛋白質,再以鏈霉抗生物素蛋白下拉(streptavidin pull-down) 方法純化感興趣蛋白作為後續質譜分析的樣品4,5。上述的方法大幅降低了雜訊與背景值,並且APEX2已成功對細胞內粒腺體的膜間隙內蛋白質進行標定5。而我們將APEX2與生物冷光共振能量傳遞系統 (bioluminescence resonance energy transfer, BRET) GFP-NanoLuciferase (GpNluc)結合,欲達成同時追蹤EVs與標定感興趣蛋白的多功能報導系統。而透過棕櫚醯化與PDGFR穿膜域將報導系統鑲嵌於膜外與膜內,我們期望以不同位點的報導系統了解EVs的蛋白質體學,並進一步解析細胞間透過EVs溝通之機制與參與蛋白。
Extracellular vesicles (EVs) are a type of cell-to-cell communication. They are nanosized vesicles with a lipid bilayer, containing DNAs, RNAs, and proteins from the donor cells1. Neighboring and distant recipient cells can take up EVs to facilitate the horizontal transfer of the genetic materials and proteins through endocytosis, fusion, macropinocytosis, and phagocytosis. In order to study the EV proteomics, scientist commonly use isobaric labeling like TMT (tandem mass tag) 2, as well as isotopic labeling such as SILAC (Stable Isotope Labeling with Amino Acids in Cell Cultures)3, to target proteins of interest (POI)。On the other hand, APEX2, an engineered peroxidase, biotinylates nearby protein by generating biotin phenol radical. The biotinylated proteins are further purified by streptavidin pull-down assay for mass spectrometry4,5. This method not only decreases the background from non-biotinylated protein but also increases the purity of POI. Alice et al. demonstrated APEX2 on the inner membrane of mitochondria to target proteins in the interspace of mitochondria5. In this study, we combined our BRET (bioluminescence resonance energy transfer) EV imaging system, PalmGpNluc with APEX2 for EV imaging while achieving proximal-dependent biotinylation and EM (electron microscopy) imaging. By fusing GpNluc, APEX2 with S-palmitoylation or PDGFR transmembrane domain (PDGFR-TM), we successfully labeled our multifunctional reporter system to the inner or outer membrane of EVs, respectively, thereby enabling EV imaging and proteomics analysis to elucidate mechanisms of EV-mediated intercellular communication.
中文摘要 ii
Abstract iv
致謝 v
縮寫表 vi
文目錄 ix
圖目錄 xii
第一章 文獻探討 1
1-1.胞外泌體 (Extracellular Vesicles, EVs) 1
1-2. 生物冷光 (Bioluminescence, BL) 5
1-3. 生物冷光共振能量轉移 (Bioluminescence Resonance energy transfer, BRET) 7
1-4. 嵌膜蛋白(Membrane Anchored Protein) 8
1-4-1. S-棕櫚醯化 (S-Palmitoylation) 8
1-4-2. 血小板衍生生長因子受體穿膜區 (platelet-derived growth factor receptor transmembrane domain, PDGFR-TM) 10
1-5. 胞外泌體的蛋白質體學 11
1-5-1. Nano Liquid chromatography-(tandem) mass spectrometry (nLC-MS/MS) 11
1-5-2. Screening and Targeted EV Proteomics 12
1-5-3. MS/MS Data Acquisition 12
1-5-4. 特定篩選反應監測Selected Reaction Monitoring/Multiple Reaction Monitoring (SRM/MRM) 14
1-5-5. 平行反應監測(Parallel Reaction Monitoring) 15
1-6. 蛋白質標定技術 15
第二章 研究動機 18
第三章 實驗材料與操作方法 20
3-1. 實驗材料 20
3-1-1. 化學藥品與材料 20
3-1-2. 儀器 25
3-2. 實驗方法 27
3-2-1. 質體去氧核醣核酸(Plasmid DNA)建構 27
3-2-2. 細菌形質轉換(Bacteria Transformation) 29
3-2-3. 細胞株培養 30
3-2-4. 胞外泌體分離 30
3-2-5. Nano-Glo 螢光素酶試驗 (Nano-Glo Luciferase Assay) 31
3-2-6. 細胞生物素化標定 31
3-2-7. 西方點墨法(Western Blot Analysis) 32
3-2-8. 胞外泌體墨點分析 34
3-2-9. 胞外泌體生物素化標定 34
3-2-10. 鏈霉抗生物素蛋白下拉方法純化生物素化標定蛋白 36
3-2-11. 銀染定量與影像紀錄 36
第四章 實驗結果 38
4-1質體建構 38
4-2. 細胞螢光觀測與生物冷光能量共振(BRET)測試 41
4-3細胞生物素標定測試 44
4-4. 胞外泌體的螢光觀測與生物冷光共振 46
4-5確認報導系統於EVs膜內外之測試 48
4-6胞外泌體生物素標定測試 50
4-7分泌信號 (secretion signal) 添加增強報導蛋白穿膜表現 54
4-8 ssAGTM與ssGATM於細胞生物素化標定測試 56
4-9 ssAGTM之胞外泌體定性測試 58
第五章、結果討論 60
第六章、 參考文獻 64
1 Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3, doi:10.3402/jev.v3.24641 (2014).
2 Clark, D. J. et al. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis. Anal Chem 87, 10462-10469, doi:10.1021/acs.analchem.5b02586 (2015).
3 Kreimer, S. et al. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14, 2367-2384, doi:10.1021/pr501279t (2015).
4 Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196, 801-810, doi:10.1083/jcb.201112098 (2012).
5 Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331, doi:10.1126/science.1230593 (2013).
6 Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014).
7 Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181, 1573-1584, doi:10.1016/j.ajpath.2012.07.030 (2012).
8 Lai, C. P. & Breakefield, X. O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3, 228, doi:10.3389/fphys.2012.00228 (2012).
9 Zaborowski, M. P., Balaj, L., Breakefield, X. O. & Lai, C. P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 65, 783-797, doi:10.1093/biosci/biv084 (2015).
10 Kumar, N. M. & Gilula, N. B. The Gap Junction Communication Channel. Cell 84, 381-388, doi:http://dx.doi.org/10.1016/S0092-8674(00)81282-9 (1996).
11 Kirchhausen, T. Clathrin. Annu Rev Biochem 69, 699-727, doi:10.1146/annurev.biochem.69.1.699 (2000).
12 Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol Biol Cell 20, 4630-4639, doi:10.1091/mbc.E09-08-0683 (2009).
13 Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol Cell Biol 19, 1410-1415 (1999).
14 Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682 (1992).
15 Nabi, I. R. & Le, P. U. Caveolae/raft-dependent endocytosis. J Cell Biol 161, 673-677, doi:10.1083/jcb.200302028 (2003).
16 Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Biophys J 36, 887-899, doi:10.1007/s00249-007-0201-z (2007).
17 Palecek, S. P., Schmidt, C. E., Lauffenburger, D. A. & Horwitz, A. F. Integrin dynamics on the tail region of migrating fibroblasts. J Cell Sci 109 ( Pt 5), 941-952 (1996).
18 Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9, 639-649, doi:10.1038/nrm2447 (2008).
19 Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756-766, doi:10.1182/blood-2011-02-338004 (2012).
20 Zomer, A. et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046-1057, doi:10.1016/j.cell.2015.04.042 (2015).
21 Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6, 7029, doi:10.1038/ncomms8029 (2015).
22 Cvetkovic, M. A., Wurm, J. P., Audin, M. J., Schutz, S. & Sprangers, R. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 13, 522-528, doi:10.1038/nchembio.2328
http://www.nature.com/nchembio/journal/v13/n5/abs/nchembio.2328.html - supplementary-information (2017).
23 Gümürdü, A. et al. MicroRNA exocytosis by large dense-core vesicle fusion. Scientific Reports 7, 45661, doi:10.1038/srep45661
https://www.nature.com/articles/srep45661 - supplementary-information (2017).
24 Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nat Struct Mol Biol 15, 675-683, doi:10.1038/nsmb.1455 (2008).
25 Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329-335, doi:10.1038/nature15756 (2015).
26 Singh, R., Pochampally, R., Watabe, K., Lu, Z. & Mo, Y. Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular cancer 13, 256, doi:10.1186/1476-4598-13-256 (2014).
27 McCready, J., Sims, J. D., Chan, D. & Jay, D. G. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC cancer 10, 294, doi:10.1186/1471-2407-10-294 (2010).
28 Lovett, J. A. C., Durcan, P. J. & Myburgh, K. H. Investigation of Circulating Extracellular Vesicle MicroRNA Following Two Consecutive Bouts of Muscle-Damaging Exercise. Front Physiol 9, 1149, doi:10.3389/fphys.2018.01149 (2018).
29 Zhu, Q. et al. Extracellular Vesicles Secreted by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. Cell Physiol Biochem 47, 1181-1192, doi:10.1159/000490214 (2018).
30 Yuan, M. et al. The Mechanism of Exosomes Function in Neurological Diseases: a progressive review. Curr Pharm Des, doi:10.2174/1381612824666180903113136 (2018).
31 Widder, E. A. & Falls, B. Review of Bioluminescence for Engineers and Scientists in Biophotonics. Ieee J Sel Top Quant 20, doi:Artn 7100710
10.1109/Jstqe.2013.2284434 (2014).
32 England, C. G., Ehlerding, E. B. & Cai, W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug Chem 27, 1175-1187, doi:10.1021/acs.bioconjchem.6b00112 (2016).
33 Gould, S. J. & Subramani, S. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175, 5-13 (1988).
34 Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88, 4438-4442 (1991).
35 Verhaegent, M. & Christopoulos, T. K. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74, 4378-4385 (2002).
36 Mehle, A. Fiat Luc: Bioluminescence Imaging Reveals In Vivo Viral Replication Dynamics. PLoS Pathog 11, e1005081, doi:10.1371/journal.ppat.1005081 (2015).
37 Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R. & Breakefield, X. O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Molecular Therapy 11, 435-443, doi:10.1016/j.ymthe.2004.10.016 (2005).
38 Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7, 1848-1857, doi:10.1021/cb3002478 (2012).
39 Wires, E. S. et al. Longitudinal monitoring of Gaussia and Nano luciferase activities to concurrently assess ER calcium homeostasis and ER stress in vivo. PloS one 12, e0175481, doi:10.1371/journal.pone.0175481 (2017).
40 Sun, S., Yang, X., Wang, Y. & Shen, X. In Vivo Analysis of Protein-Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. Int J Mol Sci 17, doi:10.3390/ijms17101704 (2016).
41 Schaub, F. X. et al. Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Cancer Res 75, 5023-5033, doi:10.1158/0008-5472.CAN-14-3538 (2015).
42 Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal Biochem 218, 1-13 (1994).
43 Periasamy, A. Fluorescence resonance energy transfer microscopy: a mini review. J Biomed Opt 6, 287-291, doi:10.1117/1.1383063 (2001).
44 Pfleger, K. D. & Eidne, K. A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3, 165-174, doi:10.1038/nmeth841 (2006).
45 Chamberlain, L. H. & Shipston, M. J. The physiology of protein S-acylation. Physiol Rev 95, 341-376, doi:10.1152/physrev.00032.2014 (2015).
46 Daniotti, J. L., Pedro, M. P. & Valdez Taubas, J. The role of S-acylation in protein trafficking. Traffic 18, 699-710, doi:10.1111/tra.12510 (2017).
47 Xu, M., Xie, L., Yu, Z. & Xie, J. Roles of Protein N-Myristoylation and Translational Medicine Applications. Crit Rev Eukaryot Gene Expr 25, 259-268 (2015).
48 Klug, L. R., Kent, J. D. & Heinrich, M. C. Structural and clinical consequences of activation loop mutations in class III receptor tyrosine kinases. Pharmacol Ther, doi:10.1016/j.pharmthera.2018.06.016 (2018).
49 Cai, Y. D., Zhou, G. P. & Chou, K. C. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84, 3257-3263, doi:10.1016/S0006-3495(03)70050-2 (2003).
50 Petrova, I., Tolstorebrov, I., Mora, L., Toldra, F. & Eikevik, T. M. Evolution of proteolytic and physico-chemical characteristics of Norwegian dry-cured ham during its processing. Meat Sci 121, 243-249, doi:10.1016/j.meatsci.2016.06.023 (2016).
51 Kreimer, S. & Ivanov, A. R. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling. Methods Mol Biol 1660, 295-302, doi:10.1007/978-1-4939-7253-1_24 (2017).
52 Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856-2860, doi:10.1038/nprot.2006.468 (2006).
53 Gaspari, M., Abbonante, V. & Cuda, G. Gel-free sample preparation for the nanoscale LC-MS/MS analysis and identification of low-nanogram protein samples. J Sep Sci 30, 2210-2216, doi:10.1002/jssc.200700192 (2007).
54 Kang, D., Oh, S., Ahn, S. M., Lee, B. H. & Moon, M. H. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res 7, 3475-3480, doi:10.1021/pr800225z (2008).
55 An, M. et al. Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy. J Proteome Res 16, 1763-1772, doi:10.1021/acs.jproteome.7b00024 (2017).
56 Wang, Y. et al. Enhanced MS/MS coverage for metabolite identification in LC-MS-based untargeted metabolomics by target-directed data dependent acquisition with time-staggered precursor ion list. Anal Chim Acta 992, 67-75, doi:10.1016/j.aca.2017.08.044 (2017).
57 Gopal, S. K. et al. Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget 7, 19709-19722, doi:10.18632/oncotarget.7573 (2016).
58 Sinha, A., Ignatchenko, V., Ignatchenko, A., Mejia-Guerrero, S. & Kislinger, T. In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. Biochem Biophys Res Commun 445, 694-701, doi:10.1016/j.bbrc.2013.12.070 (2014).
59 Jeppesen, D. K. et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 14, 699-712, doi:10.1002/pmic.201300452 (2014).
60 Kulkarni, S. et al. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow. Int J Radiat Oncol Biol Phys 96, 566-577, doi:10.1016/j.ijrobp.2016.06.008 (2016).
61 Thomas, S. N. & Zhang, H. Targeted proteomic assays for the verification of global proteomics insights. Expert Rev Proteomics, 1-3, doi:10.1080/14789450.2016.1229601 (2016).
62 Ebhardt, H. A., Root, A., Sander, C. & Aebersold, R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15, 3193-3208, doi:10.1002/pmic.201500004 (2015).
63 Burnum-Johnson, K. E. et al. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Mol Cell Proteomics 15, 3694-3705, doi:10.1074/mcp.M116.061143 (2016).
64 Shiromizu, T. et al. Quantitation of putative colorectal cancer biomarker candidates in serum extracellular vesicles by targeted proteomics. Sci Rep 7, 12782, doi:10.1038/s41598-017-13092-x (2017).
65 Chen, I. H. et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A 114, 3175-3180, doi:10.1073/pnas.1618088114 (2017).
66 Marx, V. Targeted proteomics. Nat Methods 10, 19-22 (2013).
67 Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30, 1143-1148, doi:10.1038/nbt.2375 (2012).
68 Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12, 51-54, doi:10.1038/nmeth.3179 (2015).
69 Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332-341, doi:10.1016/j.molcel.2014.06.003 (2014).
70 Bhaskar, B. et al. A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome c peroxidase. J Mol Biol 328, 157-166 (2003).
71 Rogers, M. S. et al. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 47, 10428-10439, doi:10.1021/bi8010835 (2008).
72 Amini, F., Kodadek, T. & Brown, K. C. Protein affinity labeling mediated by genetically encoded peptide tags. Angew Chem Int Ed Engl 41, 356-359 (2002).
73 Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat Protoc 11, 456-475, doi:10.1038/nprot.2016.018 (2016).
74 Holmberg, A. et al. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26, 501-510, doi:10.1002/elps.200410070 (2005).
75 Chapman-Smith, A. & Cronan, J. E., Jr. Molecular biology of biotin attachment to proteins. J Nutr 129, 477S-484S, doi:10.1093/jn/129.2.477S (1999).
76 Reznik, G. O., Vajda, S., Sano, T. & Cantor, C. R. A streptavidin mutant with altered ligand-binding specificity. Proc Natl Acad Sci U S A 95, 13525-13530 (1998).
77 Coloma, M. J., Hastings, A., Wims, L. A. & Morrison, S. L. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J Immunol Methods 152, 89-104 (1992).
78 Niers, J. M. et al. Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc 134, 5149-5156, doi:10.1021/ja209868g (2012).
79 Gronwald, R. G. et al. Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: evidence for more than one receptor class. Proc Natl Acad Sci U S A 85, 3435-3439 (1988).
80 Silvestre, J. S. et al. [Lactadherin promotes VEGF-dependent neovascularization]. Med Sci (Paris) 21, 683-685, doi:10.1051/medsci/2005218-9683 (2005).
81 Bjelosevic, M. et al. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals. Eur J Pharm Sci 122, 292-302, doi:10.1016/j.ejps.2018.07.016 (2018).
82 Wisniewski, J. R., Nagaraj, N., Zougman, A., Gnad, F. & Mann, M. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-3289, doi:10.1021/pr1002214 (2010).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *