帳號:guest(18.223.107.85)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林鈺郡
作者(外文):Lin, Yu-Jiung
論文名稱(中文):開發高效率三碲化二鉍熱觸媒及其在過氧化氫生成與抗菌的應用
論文名稱(外文):Development of High Efficient Bi2Te3 Thermalcatalyst and its Application for Hydrogen Peroxide Generation and Antibacterial Application
指導教授(中文):林宗宏
指導教授(外文):Lin, Zong-Hong
口試委員(中文):林致廷
盧彥文
黃郁棻
吳志成
口試委員(外文):Lin, Chih-Ting
Lu, Yen-Wen
Huang, Yu-Fen
Wu, Chih-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:105038502
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:熱電效應三碲化二鉍熱觸媒過氧化氫殺菌
外文關鍵詞:Thermoelectric effectbismuth telluride (Bi2Te3)thermalcatalystshydrogen peroxide (H2O2)disinfection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
活性氧物質的高活性特質,使其被科學家應用於環境與健康相關議題。一般利用觸媒產生活性氧物質的方法有兩種,分別為光觸媒或是壓電觸媒。兩者間的差異在於誘導方式不同:前者是利用光線激發;後者是利用外界環境外力激發。然而「溫度」為另一種常見但卻尚未被研究應用於觸媒催化的影響因子。故在此研究,我們開發了利用溫度變化作為激發觸媒產生活性氧物質的觸媒,稱之為「熱觸媒」。本研究發現,只要材料具有熱電效果的特性,再藉由外界溫度差的調整即能產生活性氧物質。當環境的溫度差增加,所產生活性氧物質的量也會提升。活性氧物質能和細菌表面作用,造成氧化壓力,使其失去活性死亡,故使此觸媒能運用在殺菌上。為了在日常生活中更加方便使用,本研究將熱觸媒(三碲化二鉍)塗在碳纖維布料上,作為抗菌濾網。無論是在冷熱環境的溫度差下,此布料皆具有抗菌效果。本研究結果顯示,熱電觸媒具有極大的潛力在需要活性氧物質的應用上。
The highly reactive nature of reactive oxygen species (ROS) makes it an ideal candidate for various environmental and health applications. In general, traditional catalysts used for ROS generation are only photocatalysts and piezocatalysts. Among them, the former is induced by light, while the latter is triggered by force. However, temperature is another common but not yet studied catalytic factor in the environment. In this work we have tried to use temperature as one of the controlling factors for the production of ROS and therefore came up with a novel kind of catalyst called thermal catalysts. We successfully used thermoelectric materials as thermalcatalysts to generate ROS by controlling the temperature difference. As the temperature difference increases, the amount of the ROS generated increases. Afterwards, the produced ROS can kill the bacteria by causing oxidative damage, which makes the thermalcatalyst ideal for use in disinfection. Moreover, in order to increase the practicality in daily life, bismuth telluride (Bi2Te3), serving as the thermal catalyst, was coated on the carbon fiber fabrics (Bi2Te3@CFFs) as an antibacterial filter. Irrespective of the temperature gradient being positive or negative, Bi2Te3@CFFs always had an antibacterial effect. In conclusion, the thermal catalysts provide a great potential for ROS-related applications.
摘要 I
Abstract II
List of Contents III
List of Figures V
Chapter 1 Introduction 1
Chapter 2 Literature Review and Theory 6
2.1 Thermoelectric Materials 6
2.1.1 Thermoelectric Effect 6
2.1.2 Bismuth Telluride (Bi2Te3) 7
2.2 Catalysts and Reactive Oxygen Species (ROS) 9
2.2.1 Photocatalyst 9
2.2.2 Piezocatalyst 11
2.2.3 Hydrogen Peroxide (H2O2) 13
Chapter 3 Experimental Section 15
3.1 Material and Reagent 15
3.2 Instrument 16
3.3 The Synthesis of Bi2Te3 NMs 17
3.4 The Synthesis of Bi2Te3@CFFs 17
3.5 Characterization 18
3.6 Bacteria Culture 18
3.6.1 Bacterial Preparation 18
3.6.2 Agar Plate Culture Bacteria 19
3.6.3 Disinfection Performance 20
3.7 H2O2 Detection 22
Chapter 4 Result and Discussion 24
4.1 H2O2 Generation by a Temperature Gradient 24
4.2 Characterization of Bi2Te3 NMs 30
4.3 Mechanism 32
4.4 H2O2 Generation Efficiency 36
4.5 Characterization of Bi2Te3@CFFs 39
4.6 Application in Disinfection 42
Chapter 5 Conclusion 46
Reference 47
Conference 52
1. Li, W.-P., et al., Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS nano, 2016. 10(2): p. 2017-2027.
2. Zhou, Z., et al., Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016. 45(23): p. 6597-6626.
3. Qian, X., Y. Zheng, and Y. Chen, Micro/Nanoparticle‐Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016. 28(37): p. 8097-8129.
4. Lin, Z.H., et al., Preparation of photocatalytic Au–Ag2Te nanomaterials. Chemistry-A European Journal, 2012. 18(39): p. 12330-12336.
5. Wu, J.M., et al., Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano energy, 2018. 46: p. 372-382.
6. Wu, J., et al., Strong pyro-catalysis of pyroelectric BiFeO 3 nanoparticles under a room-temperature cold–hot alternation. Nanoscale, 2016. 8(13): p. 7343-7350.
7. Li, Y., et al., Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano, 2012. 6(6): p. 5164-5173.
8. Gutmann, E., et al., Pyroelectrocatalytic disinfection using the pyroelectric effect of nano-and microcrystalline LiNbO3 and LiTaO3 particles. The Journal of Physical Chemistry C, 2012. 116(9): p. 5383-5393.
9. Yin, W., et al., Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS nano, 2016. 10(12): p. 11000-11011.
10. Tu, Z., et al., Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Advanced Materials, 2018: p. 1706709.
11. Das, S., et al., Disinfection of multidrug resistant Escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Scientific Reports, 2017. 7(1): p. 104.
12. Myers, R.L., The 100 most important chemical compounds: a reference guide. 2007: ABC-CLIO.
13. Bayr, H., Reactive oxygen species. Critical care medicine, 2005. 33(12): p. S498-S501.
14. Lu, Z., et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018: p. 1.
15. Campos‐Martin, J.M., G. Blanco‐Brieva, and J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 2006. 45(42): p. 6962-6984.
16. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
17. Wallen, C.M., J. Bacsa, and C.C. Scarborough, Hydrogen Peroxide Complex of Zinc. Journal of the American Chemical Society, 2015. 137(46): p. 14606-14609.
18. Tu, Y., et al., Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature chemistry, 2017. 9(5): p. 480.
19. Berglin, T. and N.H. Schoeoen, Selectivity aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Industrial & Engineering Chemistry Process Design and Development, 1983. 22(1): p. 150-153.
20. Chen, Q., Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor—From bench scale to industrial scale. Chemical Engineering and Processing: Process Intensification, 2008. 47(5): p. 787-792.
21. Kim, H.W., et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018. 1(4): p. 282.
22. Siahrostami, S., et al., Enabling direct H 2 O 2 production through rational electrocatalyst design. Nature materials, 2013. 12(12): p. 1137.
23. Kakuda, S., et al., Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper (II) complex possessing a pendant ligand pivalamido group. Journal of the American Chemical Society, 2013. 135(17): p. 6513-6522.
24. Verdaguer-Casadevall, A., et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano letters, 2014. 14(3): p. 1603-1608.
25. Liu, C., et al., Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light. Nature nanotechnology, 2016. 11(12): p. 1098.
26. Zhang, Y., et al., Control of electro-chemical processes using energy harvesting materials and devices. Chemical Society Reviews, 2017. 46(24): p. 7757-7786.
27. Wang, H., et al., Giant Electron–Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation. Journal of the American Chemical Society, 2017. 139(13): p. 4737-4742.
28. Kotagiri, N., et al., Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nature nanotechnology, 2015. 10(4): p. 370.
29. Lee, J.S., K.H. You, and C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Advanced Materials, 2012. 24(8): p. 1084-1088.
30. Weng, B., et al., Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nature communications, 2018. 9(1): p. 1543.
31. Starr, M.B. and X. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 2015. 14: p. 296-311.
32. Wu, J., N. Qin, and D. Bao, Effective enhancement of piezocatalytic activity of BaTiO 3 nanowires under ultrasonic vibration. Nano Energy, 2017.
33. Starr, M.B., J. Shi, and X. Wang, Piezopotential‐Driven Redox Reactions at the Surface of Piezoelectric Materials. Angewandte Chemie International Edition, 2012. 51(24): p. 5962-5966.
34. He, M., et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy & Environmental Science, 2012. 5(8): p. 8351-8358.
35. Suh, J., et al., Fermi-level stabilization in the topological insulators Bi 2 Se 3 and Bi 2 Te 3: Origin of the surface electron gas. Physical Review B, 2014. 89(11): p. 115307.
36. Chen, Y., et al., Experimental realization of a three-dimensional topological insulator, Bi2Te3. science, 2009. 325(5937): p. 178-181.
37. Hochbaum, A.I. and P. Yang, Semiconductor nanowires for energy conversion. Chemical reviews, 2009. 110(1): p. 527-546.
38. Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461.
39. Hong, M., et al., Enhancing thermoelectric performance of Bi 2 Te 3-based nanostructures through rational structure design. Nanoscale, 2016. 8(16): p. 8681-8686.
40. Mehta, R.J., et al., A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature materials, 2012. 11(3): p. 233.
41. Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414.
42. Labas, M.D., et al., Reaction kinetics of bacteria disinfection employing hydrogen peroxide. Biochemical Engineering Journal, 2008. 38(1): p. 78-87.
43. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 101-110.
44. Yashina, L.V., et al., Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. ACS nano, 2013. 7(6): p. 5181-5191.
45. Zhang, H., et al., Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface. Nature physics, 2009. 5(6): p. 438.
46. Krötz, F., H.-Y. Sohn, and U. Pohl, Reactive oxygen species: players in the platelet game. Arteriosclerosis, thrombosis, and vascular biology, 2004. 24(11): p. 1988-1996.
47. Apel, K. and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 2004. 55: p. 373-399.
48. Siahrostami, S., et al., One-or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. The Journal of Physical Chemistry Letters, 2017. 8(6): p. 1157-1160.
49. Edwards, J.K., et al., Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science, 2009. 323(5917): p. 1037-1041.
50. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
51. Low, J., et al., Heterojunction photocatalysts. Advanced Materials, 2017.
52. Zhou, R., et al., Synergistic effect of atmospheric-pressure plasma and TiO 2 photocatalysis on inactivation of Escherichia coli cells in aqueous media. Scientific reports, 2016. 6: p. 39552.
53. Chen, S., T. Takata, and K. Domen, Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2017. 2(10): p. 17050.
54. Wu, J., et al., Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO3. ACS applied materials & interfaces, 2018.
55. Shen, Z., et al., Emerging Strategies of Cancer Therapy Based on Ferroptosis. Advanced Materials, 2018. 30(12): p. 1704007.
56. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nature materials, 2008. 7(2): p. 105.
57. Leofanti, G., et al., Surface area and pore texture of catalysts. Catalysis Today, 1998. 41(1-3): p. 207-219.
58. Buha, J., et al., Thermal stability and anisotropic sublimation of two-dimensional colloidal Bi2Te3 and Bi2Se3 nanocrystals. Nano letters, 2016. 16(7): p. 4217-4223.
59. Scheele, M., et al., Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Advanced Functional Materials, 2009. 19(21): p. 3476-3483.
60. Vinoth, S., et al., Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies. Physica E: Low-dimensional Systems and Nanostructures, 2017. 92: p. 17-22.
61. Kong, D., et al., Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano letters, 2010. 10(6): p. 2245-2250.
62. Li, S., et al., Effective photocatalytic H 2 O 2 production under visible light irradiation at gC 3 N 4 modulated by carbon vacancies. Applied Catalysis B: Environmental, 2016. 190: p. 26-35.
63. Zhang, J., et al., Enhanced thermoelectric performance of a quintuple layer of Bi2Te3. Journal of Applied Physics, 2014. 116(2): p. 023706.
64. Zhou, G. and D. Wang, Few-quintuple Bi 2 Te 3 nanofilms as potential thermoelectric materials. Scientific reports, 2015. 5: p. 8099.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *