帳號:guest(3.139.234.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁健豪
作者(外文):Weng, Chien-Hao
論文名稱(中文):微機電壓電式PM2.5即時感測模組之設計與開發
論文名稱(外文):Design and Development of a Real-Time MEMS Piezoelectric PM2.5 Sensor Module
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):方維倫
施啟元
蔡明翰
邱一
鄭裕庭
李尉彰
戴慶良
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035801
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:132
中文關鍵詞:微機電薄膜壓電式元件諧振器振盪器慣性衝擊器質量感測器細懸浮微粒感測器
外文關鍵詞:PM2.5MEMSThin-film Piezoelectric-on-Silicon (TPoS)ResonatorOscillatorAerosol impactorMass sensorAerosol sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:434
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本研究中,已成功實現具備高質量靈敏度、高質量解析度,以及濃度偵測範圍可達10 μg/m3 ~1000 μg/m3之PM2.5即時感測模組,其主要架構可分為四個部分,包含二階式慣性衝擊器、微機電振盪器、訊號處理電路,以及微型馬達。
其中,二階式慣性衝擊器的第一階針對2.5 μm的細懸浮微粒之收集效率為51%,而第二階針對1.0 μm的細懸浮微粒之收集效率為50%。本研究採用薄膜壓電式微機電諧振器作為質量感測的核心元件,其振盪模態為length-extensional mode,而諧振頻率主要設計在5 MHz (無release holes) 及 4 MHz (具release hole)。在振盪器的部分,本研究首先以具備鎖相功能的商用放大器機台來達成振盪器所需要的起振條件,經過驗證,儀器級的感測器之質量解析度和靈敏度分別為0.54 pg及4.96 Hz/pg。為了實現電路板級的微機電振盪器,本研究整合商用的轉阻放大器電路、相位移轉器電路、帶通濾波器電路、緩衝器電路,以及所開發之微機電諧振器。開發完成後的電路板級振盪器於大氣環境進行量測,其相位雜訊在4.05 MHz的頻點下,於1 kHz的offset為 -111.92 dBc/Hz ;質量感測之解析度為0.71 pg ; 而藉由煙霧實測可知,感測模組的最小偵測極限可低於10 μm/m3,而最大偵測極限至少為1000 μm/m3,且經過感測數據與實際濃度比對後,可知感測資料的R2為0.81。
此外,本研究運用UMC 0.18 μm CMOS製程技術,實現三級轉阻放大器電路的開發,其增益為81.64 dBΩ。而基於此轉阻放大器電路整合之微機電振盪於大氣環境中,相位雜訊在5.79 MHz的頻點下,於1 kHz的offset為 -102.54 dBc/Hz ;質量感測之解析度為0.21 pg ; 而在煙霧實測範圍10 μm/m3 ~ 1000 μm/m3,其頻率變化和環境濃度間的R2為0.82。
本研究另進行單電源電路板級振盪器之開發,其在大氣環境中,相位雜訊在4.03 MHz的頻點下,於1 kHz的offset為 -104.39 dBc/Hz ;質量感測之解析度為0.29 pg。最後,本研究運用市售的MCU進行訊號處理電路的開發,以取代量測儀器,直接將感測結果顯示於個人電腦的螢幕上。而針對與MCU電路整合的模組,其振盪器在經過驗證後,相位雜訊在4.03 MHz的頻點下,於1 kHz的offset為 -67.19 dBc/Hz ; 質量感測之解析度為22.7 pg。
本研究開發之可攜式微型質量/懸浮微粒感測器,具備高質量解析度、高質量靈敏度、即時反應及低功率之特性,使其兼具感測精準度與攜帶便利性,在室內空氣品質監測方面具備應用上的潛力。未來將感測器量測數據雲端化,可實現物聯網模組於智慧環境監控之應用,提升民眾生活品質。
In this work, a real-time PM2.5 sensor with high mass sensitivity, high mass resolution, and wide detection range is successfully demonstrated, which consists of a two-stage aerosol impactor, a Thin-film Piezoelectric-on-Silicon (TPoS) MEMS oscillator, and a micro-pump. The aerosol impactor’s collection efficiency of 51% for 2.5 μm and 50% for 1.0 μm is verified for stage 1 and stage 2, respectively. A TPoS MEMS resonator utilizes a length-extensional mode with a resonant frequency of 5 MHz (without release holes) and 4 MHz (with release holes). A commercial Lock-in amplifier with a Phase-Locked Loop (PLL) facility was used to fulfill the Barkhausen criteria for oscillation. The mass resolution and sensitivity of the instrument-level mass sensor are 0.54 pg and 4.96 Hz/pg, respectively. To achieve a board-level TPoS oscillator, a sustaining circuit that includes a commercial transimpedance amplifier (TIA), a phase shifter, a band-pass filter, and buffer circuits is integrated with the TPoS resonator to fulfill the condition of oscillation. The phase noise of -111.92 dBc/Hz at 1 kHz offset for a carrier frequency of 4.05 MHz in air is achieved. The mass resolution of 0.71 pg was recorded in this work. For the aerosol measurement, the coefficient of determination R2 of 0.81 between the frequency slope and the aerosol concentration is attained within a range of 10 μg/m3 to 1000 μg/m3. A three stages transimpedance amplifier interface circuit using UMC 0.18 μm CMOS technology is implemented, having an impedance gain of 81.64 dBΩ. For the transimpedance amplifier interface circuit-assisted MEMS oscillator, the phase noise of -102.54 dBc/Hz at 1 kHz offset is attained for a carrier frequency of 5.79 MHz in air. The mass resolution 0.21 pg, showing the ability to detect one-fifth of the mass of single PM1 (1 pg), is realized. For the aerosol measurement, the coefficient of determination R2 of 0.82 between the frequency slope and the aerosol concentration is attained within a range of 10 μg/m3 to 1000 μg/m3. To achieve a portable module of the PM2.5 sensor, a single-supply circuit for the oscillator is demonstrated. The phase noise of -104.39 dBc/Hz at 1 kHz offset is observed for a resonant frequency of 4.03 MHz in air. The mass resolution of 0.29 pg is extracted in this work. Finally, a signal processing circuit is used to replace the measurement instruments to achieve a portable PM2.5 sensor module. For the TPoS oscillator of the sensor module, the phase noise of -67.19 dBc/Hz offset is observed for a carrier frequency of 4.03 MHz in air while the mass resolution of 22.7 pg was recorded. The sensor data can be displayed on the screen of a personal computer in real-time. As a result, the proposed technology is expected to be used in the applications of aerosol concentration monitoring in air.
ABSTRACT i
TABLE OF CONTENTS ⅲ
LIST OF FIGURES vi
LIST OF TABLES xvii
CHAPTER 1: INTRODUCTION 1
1.1. Motivation and Background 1
1.1.1. An Invisible Killer in the Air -Particulate Matter (PM) 1
1.1.2. PM2.5 Detection Methods 4
1.1.3. Commercial PM2.5 Monitors Comparison 9
1.1.4. Standards for Air Quality Sensors 10
1.2. MEMS Resonant Based Mass Sensors 13
1.2.1. Applications of MEMS Technologies 13
1.2.2. MEMS Devices for Resonant Mass Sensors 13
1.2.3. Thin-Film Piezoelectric-on-Silicon MEMS Resonators 14
1.3. Aerosol Impactors for Particulate Matter Size Screening 15
1.4. Thesis Overview 17
CHAPTER 2: ANALYSIS AND SIMULATION 20
2.1. Working Principle of TPoS MEMS Oscillators 20
2.1.1. Piezoelectric Effect 20
2.1.2. TPoS MEMS Resonator Design and Simulation 25
2.1.3. Theory of MEMS Oscillators 28
2.1.4. Instrument-Assisted TPoS MEMS Oscillator 30
2.1.5. Board-Level Circuit for the TPoS MEMS Oscillator 31
2.1.6. Transimpedance Amplifier Interface Circuit-Assisted MEMS Oscillator 37
2.2. Mass Sensing Mechanisms 39
2.2.1. Mass Sensitivity of the MEMS Oscillator 39
2.2.2. Mass Resolution of the MEMS Oscillator 40
2.3. Working Principle of Aerosol Impactors 43
2.3.1. Definition of the Aerodynamic Diameter 43
2.3.2. Particles Collection for an Inertial Impactor 44
2.3.3. Aerosol Impactor Design and Simulation 46
2.4. Data Process for the PM2.5 Sensor 51
2.4.1. Savitzky-Golay Filter 51
2.4.2. The Coefficient of Determination 53
2.5. Signal Process for the Portable PM2.5 Sensor Module 55
2.5.1. Single-Supply Circuit for the MEMS Oscillator 55
2.5.2. Signal Processing Circuit for the Portable PM2.5 Sensor Module 56
CHAPTER 3: FABRICATION 59
3.1. Fabrication of the TPoS MEMS Resonator 59
3.2. Fabrication of the Aerosol Impactor 61
3.3. Integration of the TPoS MEMS Oscillator 62
3.4. Integration of the TPoS MEMS Oscillator (with a In House Designed TIA Circuit) 63
3.5. Integration of the TPoS MEMS Oscillator (Single-Supply) 65
3.6. Integration of the TPoS MEMS Oscillator with a Signal Processing Circuit 66
CHAPTER 4: ANALYSIS OF MEASUREMENT RESULTS 67
4.1. Measurement of the Aerosol Impactor 67
4.2. Measurement of the MEMS Oscillator (Instrument-Level) 70
4.2.1. Open-Loop Measurement of the TPoS MEMS Resonator 70
4.2.2. Closed-Loop Measurement of the TPoS Oscillator (Instrument-Level) 71
4.2.3. Mass Resolution Measurement of the TPoS Oscillator (Instrument-Level) 72
4.2.4. Mass Sensitivity Measurement of the TPoS Oscillator (Instrument-Level) 74
4.3. Measurement of the MEMS Oscillator (Board-Level) 76
4.3.1. Open-Loop Measurement of the TPoS Resonator (with Release Holes) 76
4.3.2. Opened-Loop Measurement of the TPoS Oscillator (Board-Level) 77
4.3.3. Closed-Loop Measurement of the TPoS Oscillator (Board-Level) 83
4.3.4. Mass Resolution Measurement of the TPoS Oscillator (Board-Level) 86
4.3.5. Aerosol Measurement of the PM2.5 Sensor 86
4.4. Measurement of the TIA IC-Assisted MEMS Oscillator 90
4.4.1. Open-Loop Measurement of the TPoS Resonator 90
4.4.2. Opened-Loop Measurement of the TIA IC-Assisted TPoS Oscillator 90
4.4.3. Closed-Loop Measurement of the TIA IC-Assisted Oscillator 97
4.4.4. Mass Resolution Measurement of the TIA IC-Assisted Oscillator 98
4.4.5. Aerosol Measurement of the PM2.5 Sensor (Interface Circuit-Assisted) 99
4.5. Airflow Rate Measurement for the PM2.5 Sensor 102
4.6. Measurement of the MEMS Oscillator (Single-Supply) 104
4.6.1. Open-Loop Measurement of the TPoS Resonator (with Release Holes) 104
4.6.2. Open-Loop Measurement of the TPoS Oscillator (Single-Supply) 105
4.6.4. Mass Resolution Measurement of the TPoS Oscillator (Single-Supply) 113
4.7. Measurement of the Portable PM2.5 Sensor Module 113
4.7.1. Open-Loop Measurement of the TPoS Oscillator for the Sensor Module 113
4.7.2. Closed-Loop Measurement of the TPoS Oscillator for the Sensor Module 114
4.7.3. Mass Resolution Measurement of the Oscillator for the Sensor Module 118
4.7.4. Verify the Display Function of the Sensor Module 118
CHAPTER 5: CONCLUSION AND FUTURE WORKS 119
5.1. Summary 119
5.2. Conclusion 121
5.3. Future Works 121
REFERENCE 122

[1] World health organization, “WHO releases country estimates on air pollution exposure and health impact,” World Health Organization, 2016.
[2] Health Effects Institute, “State of global air 2019 special report,” Health Effects Institute, 2019.
[3] IQAir, “2019 world air quality report – region & city PM2.5 ranking,” IQAir, 2020.
[4] B. Yang, et al., “PM2.5 concentration estimation based on image quality assessment,” 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 676-681, Nov. 2017.
[5] Z. J. Pražnikar, et al., “The effects of particulate matter air pollution on respiratory health and on the cardiovascular system,” Slovenian Journal of Public Health, vol. 51, no. 3, pp. 190-199, Jan. 2012.
[6] World health organization, “Ambient air pollution: a global assessment of exposure and burden of disease,” World Health Organization, 2016.
[7] World health organization, “Air quality guidelines – global update 2005,” World Health Organization, 2005.
[8] Institute for Health Metrics and Evaluation, “Global burden of disease study 2019,” Institute for Health Metrics and Evaluation, 2020.
[9] U.S. Environmental Protection Agency, “Indoor air quality: What are the trends in indoor air quality and their effects on human health,” U.S. Environmental Protection Agency, 2018.
[10] O. Mahdavipour, et al., “Opto-dielectrometric sensor for measuring total incombustible content in underground coal mines,” IEEE Sensors Journal, vol. 17, no. 19, pp. 6443-6450, Oct. 2017.
[11] K. A. Koehler, et al., “New methods for personal exposure monitoring for airborne particles,” Current Environmental Health Reports, vol. 2, no. 4, pp. 300-411, Dec. 2015.
[12] J. Shi, et al., “Validation of a light-scattering PM2.5 sensor monitor based on the long-term gravimetric measurements in field tests,” PLOS ONE, vol. 12, no. 11, pp. 1-13, Nov. 2017.
[13] L. Øgendal, “Light scattering: a brief introduction,” University of Copenhagen, May 2019.
[14] U.S. Environmental Protection Agency, “Federal Reference Method (FRM),” U.S. Environmental Protection Agency, 1997.
[15] Deutsches Institut für Normung, “Ambient air quality - Standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particulate matter; German version EN 14907:2005,” Deutsches Institut für Normung, 2005.
[16] ASTM International, “ASTM D6552 - Standard practice for controlling and characterizing errors in weighing collected aerosols,” ASTM International: West Conshohocken, Pennsylvania, Jun. 2006.
[17] K. J. Koistinen, et al., “Fine particle (PM2.5) measurement methodology, quality assurance procedures, and pilot results of the expolis study,” Journal of the Air & Waste Management Association, vol. 49, no. 10, pp. 1212-1220, Dec. 2011.
[18] U.S. Environmental Protection Agency, “Federal Equivalent Method (FEM),” U.S. Environmental Protection Agency, 1997.
[19] Q.-F. Li, et al., “Field evaluation of particulate matter measurements using tapered element oscillating microbalance in a layer house,” Journal of the Air & Waste Management Association, vol. 62, no. 3, pp. 322-335, Mar. 2012.
[20] Queensland Government, “Measuring air quality - tapered element oscillating microbalance,” Queensland Government, 2017.
[21] J. H. Gilliam, et al., “Reference and equivalent methods used to measure national ambient air quality standards (NAAQS) criteria air pollutants - volume I,” U.S. Environmental Protection Agency, Jun. 2016.
[22] J. G. Olin, et al., “Piezoelectric microbalance for monitoring the mass concentration of suspended particles,” Atmospheric Environment, vol. 5, no. 8, pp.653-668, Aug. 1971.
[23] K. Kaur, et al., “Application of a quartz crystal microbalance to measure the mass concentration of combustion particle suspensions,” Journal of Aerosol Science, vol. 137, no. 105445, Nov. 2019.
[24] R. L. Chuan, “An instrument for the direct measurement of particulate mass,” Journal of Aerosol Science, vol. 1, no. 2, pp. 111-112, Jan. 1970.
[25] J. Zhao, et al., “Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor,” Sensors and Actuators A: Physical, vol. 238, no. 1, pp. 379-388, Feb. 2016.
[26] G. J. Sam, et al., “Performance of the piezoelectric microbalance respirable aerosol sensor,” American Industrial Hygiene Association Journal, vol. 38, no. 11, pp. 580-588, Nov. 1977.
[27] J. G. Olin, et al., “Piezoelectric-Electrostatic Aerosol Mass Concentration Monitor,” American Industrial Hygiene Association Journal, vol. 32, no. 4, pp.209-220, Apr. 1971.
[28] MSP Real-Time QCM-MOUDITM Impactor Model 140 Product Information, TSI Co., Minnesota, USA, 2019.
[29] BAM 1020 Continuous Particulate Monitor, Met One Instruments, Inc., Washington, USA, 2016.
[30] Air Mentor 2 Spec Sheet, Data Cosmos Co., New Taipei City, Taiwan, 2018.
[31] PM2.5 Sensor Module-DN7C3CA006, Sharp Co., Osaka, Japan, 2014.
[32] U.S. Environmental Protection Agency, “Air sensor guidebook,” U.S. Environmental Protection Agency, 2014.
[33] U.S. Environmental Protection Agency, “National ambient air quality standards,” U.S. Environmental Protection Agency, 1990.
[34] Air Quality Sensor Performance Evaluation Center, “Laboratory evaluation of low-cost air quality sensors,” Air Quality Sensor Performance Evaluation Center, 2016.
[35] Loughborough University, “An Introduction to MEMS (Micro-Electromechanical Systems),” Prime Faraday Partnership, ISBN 1-84402-020-7, Jan. 2002.
[36] Yole Développement, “MEMS industry: RF is changing the game…,” Status of the MEMS Industry report - Yole Développement, 2017.
[37] D. Liang, et al., “A miniature system for separating aerosol particles and measuring mass concentrations,” Sensors, vol. 10, no. 4, pp. 3641-3654, Apr. 2010.
[38] E. C. Chang, et al., “Real-time mass sensing and dynamic impact monitoring of printed pico-liter droplets realized by a thermal-piezoresistive selfsustained oscillator,” 2016 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1078-1081, Jan. 2016.
[39] N. Singh, et al., “Realizing a highly compact particulate matter sensor with a MEMS-based resonant membrane,” 2019 IEEE Sensors Conference, pp. 1-4, Oct. 2019.
[40] A. Hajjam, et al., “Detection and mass measurement of individual air-borne particles using high frequency micromechanical resonators”, 2010 IEEE Sensors Conference, pp. 2000-2004, Nov. 2010.
[41] C. A. Sung, et al., “Interface circuit design to enable miniaturization of thermal-piezoresistive oscillators for mass sensing applications,” 2019 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 899-902, Jan. 2019.
[42] D. D. Shin, et al., “Electrostatic tuning of temperature coefficient of frequency of anisotropic disk-shaped resonators,” 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), pp. 164-167, Mar. 2017.
[43] W. Zhang, et al., “Piezoresistive transduction in a double-ended tuning fork SOI MEMS resonator for enhanced linear electrical performance,” IEEE Transactions on Electron Devices, vol. 62, no. 5, pp. 1596-1602, May. 2015.
[44] J. T. M. van Beek, et al., “A review of MEMS oscillators for frequency reference and timing applications,” Journal of Micromechanics and Microengineering, vol. 22, no. 1, pp. 1-35, Dec. 2011.
[45] L. Khine, et al., “6 MHz bulk-mode resonator with Q values exceeding one million,” IEEE International Solid-State Sensors, Actuators and Microsystems Conference, pp. 2445-2448, 2007.
[46] J. -Y. Lee, et al., “5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 28-35, Nov. 2009.
[47] D. L. DeVoe, “Piezoelectric thin film micromechanical beam resonators,” Sensors and Actuators A: Physical, vol. 88, no. 3, pp. 263-272, Jan. 2001.
[48] H. Zhu, et al., “Piezoresistive readout mechanically coupled Lamé mode SOI resonator with Q of a million,” Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 771-780, Aug. 2015.
[49] B. Harrington, et al., “Toward ultimate performance in GHz MEMS resonators: low impedance and high Q,” 2010 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 707-710, Jan. 2010.
[50] Xinyi Li, et al., “Study of a 10 MHz MEMS oscillator with a TPoS resonator,” Sensors and Actuators A: Physical, vol. 258, no. 1, pp. 59-67, May 2017.
[51] S. Trolier-McKinstry, et al., “Thin film piezoelectrics for MEMS,” Journal of Electroceramics, vol. 12, no. 1-2, pp. 7-17, Jan. 2004.
[52] G. Piazza, et al., “Voltage-tunable piezoelectrically-transduced single-crystal silicon micromechanical resonators,” Sensors and Actuators A: Physical, vol. 111 no. 1, pp. 71-78, Mar. 2004.
[53] R. Abdolvand, et al., “Enhanced power handling and quality factor in thin-film piezoelectric-onsubstrate resonators,” IEEE Ultrasonics Symposium, pp. 608-611, Oct. 2007.
[54] H. M. Lavasani, et al., “A 76 dBΩ 1.7 GHz 0.18 μm CMOS tunable TIA using broadband current pre-amplifier for high frequency lateral MEMS oscillators,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 224-235, Jan. 2011.
[55] H. Fatemi, et al., “Ultra-stable nonlinear thin-film piezoelectric-on-substrate oscillators operating at bifurcation,” 2014 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1285-1288, Jan. 2014.
[56] F. Tan, et al., “Detecting of the Cu2+ ion in kiwifruit using QCM sensor based on phase measurement principle,” 2013 International Conference on Communications, Circuits and Systems (ICCCAS), pp. 480-483, Nov. 2013.
[57] X. H. Huang, et al., “The exploration and confirmation of the maximum mass sensitivity of quartz crystal microbalance,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 10, pp. 1888-1892, July 2018.
[58] H. Zu, et al., “Surface acoustic wave mass sensor based on 128° YX-cut Lithium Niobate for thermogravimetric analysis,” 2014 IEEE International Ultrasonics Symposium, pp. 2544-5547, Sept. 2014.
[59] W. John, “A simple derivation of the cutpoint of an impactor,” Journal of Aerosol Science, vol. 30, no. 10, pp. 1317-1320, Feb. 1999.
[60] M. Maldonado-Garcia, et al., “Horizontal chip-scale cascade impactor with integrated resonant mass balances,” 2016 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1070-1073, Jan. 2016.
[61] Y. Li, et al., “A machined virtual impactor for PM2 detection,” 2018 IEEE Sensors Conference, pp. 1-4, Oct. 2018.
[62] R. Kohli, et al., “Developments in surface contamination and cleaning,” William Andrew, pp. 179-213, 2012.
[63] C. N. Ketut, et al., “Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation,” MATEC Web of Conferences, vol. 101, no. 03009, Mar. 2017.
[64] Q.-F. Deng, et al., “Flow-field numerical simulation of gas-solid cyclone separator based on FLUENT,” International Conference on Digital Manufacturing & Automation, pp. 740-743, Dec. 2010.
[65] U.S. Environmental Protection Agency, “Air pollution control technology fact sheet,” U.S. Environmental Protection Agency, 2015.
[66] C.-H. Weng, et al., “A thin-film piezoelectric-on-silicon MEMS oscillator for mass sensing applications,” IEEE Sensors Journal, vol. 20, no. 13, pp. 7001-7009, Jul. 2020.
[67] C.-H. Weng, et al., “A PM2.5 sensor module based on a TPoS MEMS oscillator and an aerosol impactor,” IEEE Sensors Journal, vol. 20, no. 24, pp. 14722-14731, Dec. 2020.
[68] Y.-K. Jin, et al., “Piezoelectric materials for high performance energy harvesting devices,” 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), pp. 1-4, Jan. 2016.
[69] The Institute of Electrical and Electronics Engineers Inc, “IEEE standard on piezoelectricity,” ANSI/IEEE Std., ISBN 176-1987, 1988.
[70] C. R. Fuller, et al., “Active control of vibration,” Academic Press, ISBN 978-0-12-269440-0, Feb. 1996.
[71] R. Abdolvand, et al., “Thin film piezoelectric on silicon resonators for high frequency reference oscillator applications,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 12, pp. 2596-2606, Dec. 2008.
[72] K. N. B. Narayanan, et al., “Design and fabrication of 1 GHz lateral TPoS MEMS resonator for RF front end applications,” 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), pp. 310-313, Dec. 2017.
[73] A. Ali, et al., “Piezoelectric-on-silicon square wine-glass mode resonator for enhanced electrical characterization in water,” Transactions on Electron Devices, vol. 65, no. 5, pp. 1925-1931, Mar. 2018.
[74] A. Ali, et al., “Electrical characterization of piezoelectric-on-silicon contour mode resonators fully immersed in liquid,” Sensors and Actuators A: Physical, vol. 241, no. 15, pp. 216-223, Feb. 2016.
[75] A. A. Khan, et al., “Novel RC sinusoidal oscillator using second-generation current conveyor,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no.6, pp. 2402-2406, Nov. 2005.
[76] R. Senani, et al., “Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 43, no. 8, pp. 698-700, Aug. 1996.
[77] D. R. Bhaskar, et al., “New CFOA-based single-element-controlled sinusoidal oscillators,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 2014-2021, Nov. 2006.
[78] A. Grebennikov, “RF and microwave transistor oscillator design,” Wiley, ISBN 978-0-470-02535-2, May, 2007.
[79] Zurich Instruments, “HF2 User Manual,” Zurich Instruments, Aug. 2020.
[80] R. Keim, “Transimpedance amplifier: op-amp-based current-to-voltage signal converter,” All about Circuits - Viedio Tutorials, Sep. 2020.
[81] E. Säckinger, “Analysis and design of transimpedance amplifiers for optical receivers,” Wiley, ISBN 978-1-1192-6375-3, Oct. 2017.
[82] P. Muller, et al., “CMOS multichannel single-chip receivers for multi-gigabit optical data,” Springer, ISBN 978-1-4020-5911-7, Oct. 2007.
[83] S. Gupta, “Transimpedance amplifier - current to voltage converter,” Circuit Digest, Jul. 2019.
[84] Wideband/differential output transimpedance amplifier AD8015, Analog Devices Inc., Massachusetts, USA, 1996.
[85] R. Keim, “Focusing on phase: the all-pass filter,” All about Circuits – Technical Article, Nov. 2016.
[86] M. Thompson, “Intuitive analog circuit design,” Butterworth Heinemann, ISBN 978-0-12-405866-8, Nov. 2013.
[87] A. Williams, et al., “Electronic filter design handbook,” McGraw-Hill Education, ISBN 978-0-07-147171-8, Jul. 2006.
[88] D. Terrell, “Op amps: design, application, and troubleshooting,” Newnes, ISBN 978- 0-75-069702-6, Mar. 1996.
[89] M. Yavari, et al., “An accurate analysis of slew rate for two-stage CMOS opamps,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 3, pp. 164-167, Mar. 2005.
[90] H. Zhang, et al., “Symbolic behavioral modeling for slew and settling analysis of operational amplifiers,” IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1-4, Aug. 2011.
[91] T. C. Carusone, et al., “Analog integrated circuit design,” Wiley, ISBN: 978-1-118-21490-9, Nov. 2011.
[92] S. Thomas, et al., “Particle sensor using solidly mounted resonators,” IEEE Sensors Journal, vol. 16, no. 8, pp. 2282-2289, Apr. 2016.
[93] J. P. Black, et al., “MEMS-enabled miniaturized particulate matter monitor employing 1.6 GHz aluminum nitride thin-film bulk acoustic wave resonator (FBAR) and thermophoretic precipitator,” 2007 IEEE Ultrasonics Symposium Proceedings, pp. 476-479, Oct. 2007.
[94] A. Vitali, “Noise analysis and identification in MEMS sensors, Allan, time, hadamard, overlapping, modified, total variance,” STMicroelectronics, Jul. 2016.
[95] Freescale Semiconductor Inc., “Allan variance: noise analysis for gyroscopes,” Freescale Semiconductor Application Note, Feb. 2015.
[96] Y. S. Cheng, “Dynamic shape factor of a plate-like particle,” Aerosol Science and Technology, pp. 109-123, Jun. 2007.
[97] J. J. Whicker (2007), Conversion from physical to aerodynamic diameters for radioactive aerosols [Online]. Available: https://slideplayer.com/slide/8171644
[98] E. Mehdizadeh, et al., “Inertial impaction on MEMS balance chips for real-time air quality monitoring,” IEEE Sensors Journal, vol. 17, no. 8, pp. 2329-2337, Apr. 2017.
[99] E. Mehdizadeh, et al., “A two-stage aerosol impactor with embedded MEMS resonant mass balances for particulate size segregation and mass concentration monitoring,” 2013 IEEE Sensors Conference, pp. 1-4, Nov. 2013.
[100] V. A. Marple, et al., “Impactor Design,” Atmospheric Environment, vol. 10, pp. 891-896, Apr. 1976.
[101] J. Y. Maeng, et al., “Micromachined cascade virtual impactor for aerodynamic size classification of airborne particles,” 2007 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 619-622, Jan. 2007.
[102] E. Mehdizadeh, et al., “Aerosol impactor with embedded MEMS resonant mass balance for real-time particulate mass concentration monitoring,” 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Jun. 2013.
[103] W. C. Hinds, “Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles,” Wiley, ISBN: 978-0-471-19410-1, Jan. 1999.
[104] A. Savitzky, et al., “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627-1639, Jul. 1964.
[105] D. Zhang, “A coefficient of determination for generalized linear models,” The American Statistician, vol. 71, no. 4, pp. 310-316, Jan. 2018.
[106] D. S. Moore, et al., “The basic practice of statistics,” W. H. Freeman, ISBN: 978-146-414253-6, Jan. 2015.
[107] W. G. Zikmund, et al., “Business research methods,” Oxford University Press, ISBN:978-1-133-19094-3, Aug. 2002.
[108] S. Glantz, et al., “Primer of applied regression & analysis of variance,” McGraw-Hill Education, ISBN: 978-0-071-82411-8, Apr. 2016.
[109] N. R. Draper, et al., “Applied regression analysis,” Wiley, ISBN: 978-0-471-17082-2, Apr. 1998.
[110] High-speed, closed-loop buffer, BUF602, Texas Instruments Inc., Dallas, USA, 2008.
[111] LMH6629 ultra-low noise, high-speed operational amplifier with shutdown, Texas Instruments Inc., Dallas, USA, 2014.
[112] R. L. Wabeke, “Air contaminants, ventilation, and industrial hygiene economics,” CRC Press, ISBN: 978-1-138-07300-5, Apr. 2017.
[113] C.-C. Chu, et al., “Thermal-piezoresistive SOI-MEMS oscillators based on a fully differential mechanically coupled resonator array for mass sensing applications,” Journal of Microelectromechanical Systems, vol. 27, no. pp. 59-72, Feb. 2018.
[114] E.-C. Chang, et al., “Real-time mass sensing and dynamic impact monitoring of printed pico-liter droplets realized by a thermal-piezoresistive self-sustained oscillator,” 2016 IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1078-1081, Jan. 2016.
[115] B. P. Harrington, et al., “Thin-film piezoelectric-on-silicon particle mass sensor,” 2010 IEEE International Frequency Control Symposium, pp. 238-241, Jun. 2010.
[116] B. T. Khuri-Yakub, et al., “The capacitive micromachined ultrasonic transducer (CMUT) as a chem/bio sensor,” 2007 IEEE Ultrasonics Symposium Proceedings, pp. 472-475, Oct. 2007.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *