|
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science, vol. 306, no. 5696, pp. 666–669, 2004. [2] A. K. Geim and K. S. Novoselov, “The rise of graphene,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19, World Scientific, 2010. [3] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, p. 820, 2009. [4] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” science, vol. 319, no. 5867, pp. 1229–1232, 2008. [5] D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. C. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim, et al., “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science, vol. 323, no. 5914, pp. 610– 613, 2009. [6] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. Vandersypen, “Gateinduced insulating state in bilayer graphene devices,” Nature materials, vol. 7, no. 2, p. 151, 2008. [7] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin mos 2: a new direct-gap semiconductor,” Physical review letters, vol. 105, no. 13, p. 136805, 2010. [8] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer mos 2,” Nature nanotechnology, vol. 8, no. 7, p. 497, 2013. [9] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, “Single-layer mos 2 transistors,” Nature nanotechnology, vol. 6, no. 3, p. 147, 2011. [10] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “Highperformance single layered wse2 p-fets with chemically doped contacts,” Nano letters, vol. 12, no. 7, pp. 3788–3792, 2012. [11] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nature nanotechnology, vol. 9, no. 5, p. 372, 2014. [12] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2d semiconductor with a high hole mobility,” ACS nano, vol. 8, no. 4, pp. 4033–4041, 2014. [13] Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, et al., “Interaction of black phosphorus with oxygen and water,” Chemistry of Materials, vol. 28, no. 22, pp. 8330–8339, 2016. 83 Bibliography [14] S. Sucharitakul, N. J. Goble, U. R. Kumar, R. Sankar, Z. A. Bogorad, F.-C. Chou, Y.-T. Chen, and X. P. Gao, “Intrinsic electron mobility exceeding 103 cm2/(v s) in multilayer inse fets,” Nano letters, vol. 15, no. 6, pp. 3815–3819, 2015. [15] D. A. Bandurin, A. V. Tyurnina, L. Y. Geliang, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, et al., “High electron mobility, quantum hall effect and anomalous optical response in atomically thin inse,” Nature nanotechnology, vol. 12, no. 3, p. 223, 2017. [16] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nature nanotechnology, vol. 9, no. 10, p. 768, 2014. [17] T. N. Theis and P. M. Solomon, “It’s time to reinvent the transistor!,” Science, vol. 327, no. 5973, pp. 1600–1601, 2010. [18] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature nanotechnology, vol. 7, no. 11, p. 699, 2012. [19] M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nature Reviews Materials, vol. 1, no. 11, p. 16052, 2016. [20] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2d transition metal dichalcogenides,” Nature Reviews Materials, vol. 2, no. 8, p. 17033, 2017. [21] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, et al., “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano letters, vol. 11, no. 6, pp. 2396–2399, 2011. [22] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical review letters, vol. 98, no. 20, p. 206805, 2007. [23] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nature materials, vol. 9, no. 4, p. 315, 2010. [24] J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, pp. 193–335, 1969. [25] A. Yoffe, “Layer compounds,” Annual Review of Materials Science, vol. 3, no. 1, pp. 147– 170, 1973. [26] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-twodimensional systems,” Advances in Physics, vol. 42, no. 2, pp. 173–262, 1993. [27] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of ws2 and wse2,” ACS nano, vol. 7, no. 1, pp. 791–797, 2012. [28] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and intrinsic mobility in ultra-thin mose2 layers,” Applied Physics Letters, vol. 101, no. 22, p. 223104, 2012. 84 Bibliography [29] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer mos2,” Nano letters, vol. 10, no. 4, pp. 1271– 1275, 2010. [30] R. F. Pierret and G. W. Neudeck, Advanced semiconductor fundamentals, vol. 6. Addison- Wesley Reading, MA, 1987. [31] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nature communications, vol. 5, p. 4475, 2014. [32] X. Liu, K.-W. Ang, W. Yu, J. He, X. Feng, Q. Liu, H. Jiang, D. Tang, J. Wen, Y. Lu, et al., “Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature,” Scientific reports, vol. 6, p. 24920, 2016. [33] A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. Alvarez, et al., “Isolation and characterization of few-layer black phosphorus,” 2D Materials, vol. 1, no. 2, p. 025001, 2014. [34] J. O. Island, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Environmental instability of few-layer black phosphorus,” 2D Materials, vol. 2, no. 1, p. 011002, 2015. [35] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, et al., “Evolution of the electronic band structure and efficient photodetection in atomic layers of inse,” ACS nano, vol. 8, no. 2, pp. 1263–1272, 2014. [36] S. R. Tamalampudi, Y.-Y. Lu, R. Kumar U, R. Sankar, C.-D. Liao, K. Moorthy B, C.-H. Cheng, F. C. Chou, and Y.-T. Chen, “High performance and bendable few-layered inse photodetectors with broad spectral response,” Nano letters, vol. 14, no. 5, pp. 2800–2806, 2014. [37] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, et al., “Tuning the bandgap of exfoliated inse nanosheets by quantum confinement,” Advanced Materials, vol. 25, no. 40, pp. 5714– 5718, 2013. [38] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, et al., “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568–571, 2011. [39] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility inse transistors: the role of surface oxides,” Acs Nano, vol. 11, no. 7, pp. 7362–7370, 2017. [40] M. Li, C.-Y. Lin, S.-H. Yang, Y.-M. Chang, J.-K. Chang, F.-S. Yang, C. Zhong, W.-B. Jian, C.-H. Lien, C.-H. Ho, et al., “High mobilities in layered inse transistors with indiumencapsulation- induced surface charge doping,” Advanced Materials, vol. 30, no. 44, p. 1803690, 2018. [41] N. Kuroda and Y. Nishina, “Resonance raman scattering study on exciton and polaron anisotropies in inse,” Solid State Communications, vol. 34, no. 6, pp. 481–484, 1980. [42] E. Kress-Rogers, R. Nicholas, J. Portal, and A. Chevy, “Cyclotron resonance studies on bulk and two-dimensional conduction electrons in inse,” Solid State Communications, vol. 44, no. 3, pp. 379–383, 1982. 85 Bibliography [43] A. Segura, F. Pomer, A. Cantarero, W. Krause, and A. Chevy, “Electron scattering mechanisms in n-type indium selenide,” Physical Review B, vol. 29, no. 10, p. 5708, 1984. [44] X. Wei, C. Dong, A. Xu, X. Li, and D. D. Macdonald, “Oxygen-induced degradation of the electronic properties of thin-layer inse,” Physical Chemistry Chemical Physics, vol. 20, no. 4, pp. 2238–2250, 2018. [45] C. Carlone and S. Jandl, “Second order raman spectrum and phase transition in inse,” Solid State Communications, vol. 29, no. 1, pp. 31–33, 1979. [46] K. Kumazaki and K. Imai, “Far-infrared reflection and raman scattering spectra in -inse,” Physica Status Solidi B, vol. 149, no. 2, pp. K183–K186, 1988. [47] S. Jandl and C. Carlone, “Raman spectrum of crystalline inse,” Solid State Communications, vol. 25, no. 1, pp. 5–8, 1978. [48] R. Schwarcz, M. Kanehisa, M. Jouanne, J. Morhange, and M. Eddrief, “Evolution of raman spectra as a function of layer thickness in ultra-thin inse films,” Journal of Physics: Condensed Matter, vol. 14, no. 5, p. 967, 2002. [49] M. Brotons-Gisbert, J. Sánchez-Royo, and J. Martínez-Pastor, “Thickness identification of atomically thin inse nanoflakes on sio2/si substrates by optical contrast analysis,” Applied Surface Science, vol. 354, pp. 453–458, 2015. [50] A. Politano, G. Chiarello, R. Samnakay, G. Liu, B. Gürbulak, S. Duman, A. Balandin, and D. Boukhvalov, “The influence of chemical reactivity of surface defects on ambient-stable inse-based nanodevices,” Nanoscale, vol. 8, no. 16, pp. 8474–8479, 2016. [51] V. Katerynchuk and Z. Kovalyuk, “Surface morphology and electrical resistance of the oxide film on inse,” Inorganic Materials, vol. 47, no. 7, pp. 749–752, 2011. [52] Y.-R. Chang, P.-H. Ho, C.-Y. Wen, T.-P. Chen, S.-S. Li, J.-Y. Wang, M.-K. Li, C.-A. Tsai, R. Sankar, W.-H. Wang, et al., “Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector,” ACS Photonics, vol. 4, no. 11, pp. 2930–2936, 2017. [53] D. S. Schulman, A. J. Arnold, and S. Das, “Contact engineering for 2d materials and devices,” Chemical Society Reviews, vol. 47, no. 9, pp. 3037–3058, 2018. [54] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type wse2 field effect transistors,” Nano letters, vol. 13, no. 5, pp. 1983–1990, 2013. [55] W. Feng, X. Zhou, W. Q. Tian, W. Zheng, and P. Hu, “Performance improvement of multilayer inse transistors with optimized metal contacts,” Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 3653–3658, 2015. [56] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, et al., “High-mobility and low-power thin-film transistors based on multilayer mos 2 crystals,” Nature communications, vol. 3, p. 1011, 2012. [57] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308–1308, 2008. 86 Bibliography [58] J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Applied Physics Letters, vol. 93, no. 13, p. 131905, 2008. [59] A. Wright, J. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Physical review letters, vol. 103, no. 20, p. 207401, 2009. [60] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS nano, vol. 4, no. 2, pp. 803–810, 2010. [61] T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nature photonics, vol. 4, no. 5, p. 297, 2010. [62] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nature photonics, vol. 4, no. 9, p. 611, 2010. [63] L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nature materials, vol. 11, no. 10, p. 865, 2012. [64] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nature Photonics, vol. 7, no. 11, p. 883, 2013. [65] C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultrabroadband and high responsivity at room temperature,” Nature nanotechnology, vol. 9, no. 4, p. 273, 2014. [66] B. E. Saleh and M. C. Teich, “Fundamentals of photonics. 2007,” John Wiey & Sons, Inc, pp. 260–269. [67] G. Konstantatos and E. H. Sargent, “Solution-processed quantum dot photodetectors,” Proceedings of the IEEE, vol. 97, no. 10, pp. 1666–1683, 2009. [68] E. L. Dereniak and G. D. Boreman, Infrared detectors and systems, vol. 306. Wiley New York, 1996. [69] R. C. Jones, “A method of describing the detectivity of photoconductive cells,” Review of Scientific Instruments, vol. 24, no. 11, pp. 1035–1040, 1953. [70] C.-H. Yeh, H.-C. Chen, H.-C. Lin, Y.-C. Lin, Z.-Y. Liang, M.-Y. Chou, K. Suenaga, and P.- W. Chiu, “Ultrafast monolayer in/gr-ws2-gr hybrid photodetectors with high gain,” ACS nano, 2019. [71] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide t s 2,” Physical Review B, vol. 83, no. 24, p. 245213, 2011. [72] F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nature Photonics, vol. 8, no. 12, p. 899, 2014. [73] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature nanotechnology, vol. 5, no. 10, p. 722, 2010. 87 Bibliography [74] S. Lebegue and O. Eriksson, “Electronic structure of two-dimensional crystals from ab initio theory,” Physical Review B, vol. 79, no. 11, p. 115409, 2009. [75] N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer ws 2 nanoflakes,” Scientific reports, vol. 4, p. 5209, 2014. [76] M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano letters, vol. 13, no. 8, pp. 3664–3670, 2013. [77] T. Li and G. Galli, “Electronic properties of mos2 nanoparticles,” The Journal of Physical Chemistry C, vol. 111, no. 44, pp. 16192–16196, 2007. [78] G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, “Optical properties of ms 2 (m= mo, w) inorganic fullerenelike and nanotube material optical absorption and resonance raman measurements,” Journal of materials research, vol. 13, no. 9, pp. 2412– 2417, 1998. [79] C. Ballif, M. Regula, P. Schmid, M. Remškar, R. Sanjinés, and F. Lévy, “Preparation and characterization of highly oriented, photoconducting ws 2 thin films,” Applied Physics A, vol. 62, no. 6, pp. 543–546, 1996. [80] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, “Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed mose 2, mote 2 and ws 2 monolayers,” Physical Chemistry Chemical Physics, vol. 13, no. 34, pp. 15546–15553, 2011. [81] H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López- Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular ws2 monolayers,” Nano letters, vol. 13, no. 8, pp. 3447– 3454, 2012. [82] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, vol. 442, no. 7099, p. 180, 2006. [83] G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nature photonics, vol. 1, no. 9, p. 531, 2007. [84] V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science, vol. 324, no. 5934, pp. 1542– 1544, 2009. [85] S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared hgte colloidal quantum dot photodetectors,” Nature Photonics, vol. 5, no. 8, p. 489, 2011. [86] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. De Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nature nanotechnology, vol. 7, no. 6, p. 363, 2012. [87] N. Huo, S. Gupta, and G. Konstantatos, “Mos2–hgte quantum dot hybrid photodetectors beyond 2 m,” Advanced materials, vol. 29, no. 17, p. 1606576, 2017. [88] Y.-C. Lin, C.-H. Yeh, H.-C. Lin, M.-D. Siao, Z. Liu, H. Nakajima, T. Okazaki, M.-Y. Chou, K. Suenaga, and P.-W. Chiu, “Stable 1t tungsten disulfide monolayer and its junctions: Growth and atomic structures,” ACS nano, vol. 12, no. 12, pp. 12080–12088, 2018. 88 Bibliography [89] K. Kang, K. Godin, Y. D. Kim, S. Fu, W. Cha, J. Hone, and E.-H. Yang, “Grapheneassisted antioxidation of tungsten disulfide monolayers: Substrate and electric-field effect,” Advanced Materials, vol. 29, no. 18, p. 1603898, 2017. [90] J. Gao, B. Li, J. Tan, P. Chow, T.-M. Lu, and N. Koratkar, “Aging of transition metal dichalcogenide monolayers,” ACS nano, vol. 10, no. 2, pp. 2628–2635, 2016. [91] A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.- I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, et al., “Identification of individual and few layers of ws 2 using raman spectroscopy,” Scientific reports, vol. 3, p. 1755, 2013. [92] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer mos2,” ACS nano, vol. 4, no. 5, pp. 2695–2700, 2010. [93] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G.-B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, et al., “High-detectivity multilayer mos2 phototransistors with spectral response from ultraviolet to infrared,” Advanced materials, vol. 24, no. 43, pp. 5832–5836, 2012. [94] L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “Highresponsivity uv-vis photodetector based on transferable ws 2 film deposited by magnetron sputtering,” Scientific reports, vol. 6, p. 20343, 2016. [95] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer mos2 phototransistors,” ACS nano, vol. 6, no. 1, pp. 74–80, 2011. [96] E. Liu, M. Long, J. Zeng, W. Luo, Y. Wang, Y. Pan, W. Zhou, B. Wang, W. Hu, Z. Ni, et al., “High responsivity phototransistors based on few-layer res2 for weak signal detection,” Advanced Functional Materials, vol. 26, no. 12, pp. 1938–1944, 2016. |