|
[1] Y. Imamura et al., "Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer," Oncol Rep, vol. 33, no. 4, pp. 1837-43, Apr 2015. [2] M. W. Tibbitt and K. S. Anseth, "Hydrogels as extracellular matrix mimics for 3D cell culture," Biotechnol Bioeng, vol. 103, no. 4, pp. 655-63, Jul 1 2009. [3] J. Lee, M. J. Cuddihy, and N. A. Kotov, "Three-dimensional cell culture matrices: state of the art," Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61-86, Mar 2008. [4] W. Zhang et al., "Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model," Anal Biochem, vol. 515, pp. 47-54, Dec 15 2016. [5] A. Abbott, "Cell culture: Biology's new dimension," Nature, 10.1038/424870a vol. 424, no. 6951, pp. 870-872, 08/21/print 2003. [6] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, "Multicellular tumor spheroids: an underestimated tool is catching up again," J Biotechnol, vol. 148, no. 1, pp. 3-15, Jul 1 2010. [7] K. Shield, M. L. Ackland, N. Ahmed, and G. E. Rice, "Multicellular spheroids in ovarian cancer metastases: Biology and pathology," Gynecol Oncol, vol. 113, no. 1, pp. 143-8, Apr 2009. [8] M. Zietarska et al., "Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC)," Mol Carcinog, vol. 46, no. 10, pp. 872-85, Oct 2007. [9] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, "Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors," Assay Drug Dev Technol, vol. 12, no. 4, pp. 207-18, May 2014. [10] H. Huang, Y. Ding, X. S. Sun, and T. A. Nguyen, "Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells," PLoS One, vol. 8, no. 3, p. e59482, 2013. [11] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends Cell Biol, vol. 21, no. 12, pp. 745-54, Dec 2011. [12] F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, "The third dimension bridges the gap between cell culture and live tissue," Nat Rev Mol Cell Biol, 10.1038/nrm2236 vol. 8, no. 10, pp. 839-845, 10//print 2007. [13] D. Khaitan, S. Chandna, M. B. Arya, and B. S. Dwarakanath, "Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy," J Transl Med, vol. 4, p. 12, Mar 2 2006. [14] R. Z. Lin and H. Y. Chang, "Recent advances in three-dimensional multicellular spheroid culture for biomedical research," Biotechnol J, vol. 3, no. 9-10, pp. 1172-84, Oct 2008. [15] A. Riedl et al., "Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses," J Cell Sci, vol. 130, no. 1, pp. 203-218, Jan 1 2017. [16] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, "High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array," Analyst, vol. 136, no. 3, pp. 473-8, Feb 07 2011. [17] O. Frey, P. M. Misun, D. A. Fluri, J. G. Hengstler, and A. Hierlemann, "Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis," Nat Commun, vol. 5, p. 4250, 2014. [18] H. W. Wu, Y. H. Hsiao, C. C. Chen, S. F. Yet, and C. H. Hsu, "A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation," Molecules, vol. 21, no. 7, 2016. [19] V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, "Characterization of a membrane-based gradient generator for use in cell-signaling studies," Lab Chip, vol. 6, no. 3, pp. 389-93, Mar 2006. [20] J. Diao et al., "A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis," Lab Chip, vol. 6, no. 3, pp. 381-8, Mar 2006. [21] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, "Generation of Gradients Having Complex Shapes Using Microfluidic Networks," Analytical Chemistry, vol. 73, no. 6, pp. 1240-1246, 2001/03/01 2001. [22] N. Ye, J. Qin, W. Shi, X. Liu, and B. Lin, "Cell-based high content screening using an integrated microfluidic device," Lab Chip, vol. 7, no. 12, pp. 1696-704, Dec 2007. [23] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays," Biotechnol Bioeng, vol. 89, no. 1, pp. 1-8, Jan 05 2005. [24] W. Du, L. Li, K. P. Nichols, and R. F. Ismagilov, "SlipChip," Lab Chip, vol. 9, no. 16, pp. 2286-92, Aug 21 2009. [25] L. Li, W. Du, and R. F. Ismagilov, "Multiparameter Screening on SlipChip Used for Nanoliter Protein Crystallization Combining Free Interface Diffusion and Microbatch Methods," Journal of the American Chemical Society, vol. 132, no. 1, pp. 112-119, 2010/01/13 2010. [26] C. Shen, P. Xu, Z. Huang, D. Cai, S. J. Liu, and W. Du, "Bacterial chemotaxis on SlipChip," Lab Chip, vol. 14, no. 16, pp. 3074-80, Aug 21 2014. [27] C. W. Chang, C. C. Peng, W. H. Liao, and Y. C. Tung, "Polydimethylsiloxane SlipChip for mammalian cell culture applications," Analyst, vol. 140, no. 21, pp. 7355-65, Nov 07 2015. [28] I. R. G. Ogilvie, V. J. Sieben, C. F. A. Floquet, R. Zmijan, M. C. Mowlem, and H. Morgan, "Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC," Journal of Micromechanics and Microengineering, vol. 20, no. 6, p. 065016, 2010. [29] D. B. Wolfe, D. Qin, and G. M. Whitesides, "Rapid prototyping of microstructures by soft lithography for biotechnology," Methods Mol Biol, vol. 583, pp. 81-107, 2010. [30] C. H. Hsu, C. Chen, and A. Folch, ""Microcanals" for micropipette access to single cells in microfluidic environments," Lab Chip, vol. 4, no. 5, pp. 420-4, Oct 2004. [31] F. Albert, J. Byung-Ho, H. Octavio, B. D. J., and T. Mehmet, "Microfabricated elastomeric stencils for micropatterning cell cultures," Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 346-353, 2000. [32] A. T. MV Berridge, KD McCoy, R Wang, "The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts," Biochemica vol. 4, no. 1, pp. 14-19, 1996. [33] K. M. Kim, S. B. Lee, S. H. Lee, Y. K. Lee, and K. N. Kim, "Comparison of Validity between WST-1 and MTT Test in Bioceramic Materials," Key Engineering Materials, vol. 284-286, pp. 585-588, 2005.
|