帳號:guest(3.145.12.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):湯家瑜
作者(外文):Tang, Chia-Yu
論文名稱(中文):利用滑動式晶片產生特定濃度懸掛液珠應用於三維細胞培養與藥物測試
論文名稱(外文):Generation of Hanging Drops with Defined Solution Concentrations Using a Sliding Hanging Drop Chip for Three-dimensional Cell Culture and Drug Testing
指導教授(中文):傅建中
許佳賢
指導教授(外文):Fu, Chien-Chung
Hsu, Chia-Hsien
口試委員(中文):林彥亨
陳致真
口試委員(外文):Lin, Yen-Heng
Chen, Chih-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035521
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:50
中文關鍵詞:微流體三維細胞培養藥物測試
外文關鍵詞:MicrofluidicsThree-dimensional cell cultureDrug testing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細胞培養技術在當今的基礎與臨床醫學研究領域上扮演了不可或缺的角色。利用細胞培養皿進行細胞培養實驗是當今最主流且被廣泛使用的細胞培養方式,其具有容易操作及觀察等特性,然而此種技術係將細胞培養於二維平面上,與生物體內三維細胞成長環境相比尚具有極大的不同。因此近年來,三維細胞培養越來越受到重視。有許多研究證實三維培養的細胞在型態、蛋白質及基因表現或抗藥性等特性上與二維培養細胞相比具有很大的不同。因其培養環境更接近於生物體內的狀況,在三維培養環境中進行的藥物測試,相較於二維細胞培養實驗能提供更好的預測結果。在不同的三維細胞培養技術中,懸掛液珠法因具有了容易操作、成本低廉等特性而被廣泛使用。然而要利用懸掛液珠進行細胞藥物測試,必須以人工逐一處理每顆懸掛液珠,或以機械手臂進行高通量測試,因此具有很高的時間及金錢成本。微流體科技因能夠精準的操控小量液體,並且在單位面積上提供大量的測試,在細胞培養與藥物測試方面可以提供良好的解決方案。然而目前利用微流體技術應用於懸掛液珠細胞培養之藥物測試,須藉由外部儀器或閥門結構來產生藥物測試所需的濃度序列,操作上相對困難。因此在本論文中,提出一種用於整合懸掛液珠三維細胞培養與藥物測試的簡易解決方案。此種方法僅須使用實驗室常見之微量移液器,即可操作晶片產生三維細胞培養環境,並且藉由簡易滑動產生藥物濃度序列應用於藥物測試。此外,不同於之前之滑動微流體晶片,藉由製造晶片所用的原料改良,可讓此晶片之可操作時間延長,在至少一周之長時間細胞培養後仍具有可操作之的能力,更能夠符合不同細胞藥物測試時間之需求。
Cell culture systems are indispensable tools that are used in a wide range of laboratory and clinical researches. Using petri dish to perform cell culture experiments has been a well-developed and common method for cell biology research. However, in last decades, three-dimensional (3D) cell culture systems have gained more and more interest due to their advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In a variety of 3D cell culture methods, hanging drop system has been widely used for 3D cell sphere culture application. This method traditionally requires manual or robotic arm to operate, thus it is time consuming or high cost. Microfluidic technology provides an attractive tool due to its ability of handling low volume liquid and potential of building high-throughput systems. Since 3D cell culture provides a closer microenvironment to human body, performing drug discovering based on it bear the potential of more predictive power for clinical efficacy than on 2D. However, till now, the drug testing relevance of 3D cell culture systems mainly require control valves or pumps to drive the fluid, which increases the complexity of operation and limits the application. In this project, we present a new approach which can be used to build a simplified hanging drop chip system integrated with drug testing function. Without using other external equipment, three-dimensional cell culture and drug application processes can be easily done by using a conventional pipette and sliding the chip. The material for making the chip is also modified from traditional microfluidic materials, which allows the ability of further operation after culturing cell up to 7 days.
摘要-----------------------------------------------------------------------------I
Abstract------------------------------------------------------------------------II
Table of contents--------------------------------------------------------------III
Literature Review----------------------------------------------------------------1
Two-dimensional (2D) vs. three-dimensional (3D) cell cultur----------------------1
Hanging drop method on microfluidic device---------------------------------------4
Concentration gradient generator on microfluidic device--------------------------8
Slip chip technique-------------------------------------------------------------10
Materials and methods-----------------------------------------------------------11
Chip design---------------------------------------------------------------------11
Chip fabrication----------------------------------------------------------------16
Device substrate and holder-----------------------------------------------------21
Numerical simulation------------------------------------------------------------22
Comparison of the long-term lubrication ability of normal and modified PDMS-----22
Cell culture and maintenance----------------------------------------------------24
Cell toxicity test--------------------------------------------------------------24
Cell imaging--------------------------------------------------------------------27
Experimental Results------------------------------------------------------------28
Device fabrication--------------------------------------------------------------28
Device assembly-----------------------------------------------------------------31
Characterization of modified PDMS for device fabrication------------------------33
Chip operation------------------------------------------------------------------35
Drop formation height measurement-----------------------------------------------36
Aggregation test----------------------------------------------------------------37
Time-dependent concentration by diffusion---------------------------------------38
Cell culture experiment---------------------------------------------------------41
Discussion----------------------------------------------------------------------46
Conclusion----------------------------------------------------------------------47
References----------------------------------------------------------------------48
[1] Y. Imamura et al., "Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer," Oncol Rep, vol. 33, no. 4, pp. 1837-43, Apr 2015.
[2] M. W. Tibbitt and K. S. Anseth, "Hydrogels as extracellular matrix mimics for 3D cell culture," Biotechnol Bioeng, vol. 103, no. 4, pp. 655-63, Jul 1 2009.
[3] J. Lee, M. J. Cuddihy, and N. A. Kotov, "Three-dimensional cell culture matrices: state of the art," Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61-86, Mar 2008.
[4] W. Zhang et al., "Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model," Anal Biochem, vol. 515, pp. 47-54, Dec 15 2016.
[5] A. Abbott, "Cell culture: Biology's new dimension," Nature, 10.1038/424870a vol. 424, no. 6951, pp. 870-872, 08/21/print 2003.
[6] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, "Multicellular tumor spheroids: an underestimated tool is catching up again," J Biotechnol, vol. 148, no. 1, pp. 3-15, Jul 1 2010.
[7] K. Shield, M. L. Ackland, N. Ahmed, and G. E. Rice, "Multicellular spheroids in ovarian cancer metastases: Biology and pathology," Gynecol Oncol, vol. 113, no. 1, pp. 143-8, Apr 2009.
[8] M. Zietarska et al., "Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC)," Mol Carcinog, vol. 46, no. 10, pp. 872-85, Oct 2007.
[9] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, "Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors," Assay Drug Dev Technol, vol. 12, no. 4, pp. 207-18, May 2014.
[10] H. Huang, Y. Ding, X. S. Sun, and T. A. Nguyen, "Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells," PLoS One, vol. 8, no. 3, p. e59482, 2013.
[11] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends Cell Biol, vol. 21, no. 12, pp. 745-54, Dec 2011.
[12] F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, "The third dimension bridges the gap between cell culture and live tissue," Nat Rev Mol Cell Biol, 10.1038/nrm2236 vol. 8, no. 10, pp. 839-845, 10//print 2007.
[13] D. Khaitan, S. Chandna, M. B. Arya, and B. S. Dwarakanath, "Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy," J Transl Med, vol. 4, p. 12, Mar 2 2006.
[14] R. Z. Lin and H. Y. Chang, "Recent advances in three-dimensional multicellular spheroid culture for biomedical research," Biotechnol J, vol. 3, no. 9-10, pp. 1172-84, Oct 2008.
[15] A. Riedl et al., "Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses," J Cell Sci, vol. 130, no. 1, pp. 203-218, Jan 1 2017.
[16] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, "High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array," Analyst, vol. 136, no. 3, pp. 473-8, Feb 07 2011.
[17] O. Frey, P. M. Misun, D. A. Fluri, J. G. Hengstler, and A. Hierlemann, "Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis," Nat Commun, vol. 5, p. 4250, 2014.
[18] H. W. Wu, Y. H. Hsiao, C. C. Chen, S. F. Yet, and C. H. Hsu, "A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation," Molecules, vol. 21, no. 7, 2016.
[19] V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, "Characterization of a membrane-based gradient generator for use in cell-signaling studies," Lab Chip, vol. 6, no. 3, pp. 389-93, Mar 2006.
[20] J. Diao et al., "A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis," Lab Chip, vol. 6, no. 3, pp. 381-8, Mar 2006.
[21] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, "Generation of Gradients Having Complex Shapes Using Microfluidic Networks," Analytical Chemistry, vol. 73, no. 6, pp. 1240-1246, 2001/03/01 2001.
[22] N. Ye, J. Qin, W. Shi, X. Liu, and B. Lin, "Cell-based high content screening using an integrated microfluidic device," Lab Chip, vol. 7, no. 12, pp. 1696-704, Dec 2007.
[23] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays," Biotechnol Bioeng, vol. 89, no. 1, pp. 1-8, Jan 05 2005.
[24] W. Du, L. Li, K. P. Nichols, and R. F. Ismagilov, "SlipChip," Lab Chip, vol. 9, no. 16, pp. 2286-92, Aug 21 2009.
[25] L. Li, W. Du, and R. F. Ismagilov, "Multiparameter Screening on SlipChip Used for Nanoliter Protein Crystallization Combining Free Interface Diffusion and Microbatch Methods," Journal of the American Chemical Society, vol. 132, no. 1, pp. 112-119, 2010/01/13 2010.
[26] C. Shen, P. Xu, Z. Huang, D. Cai, S. J. Liu, and W. Du, "Bacterial chemotaxis on SlipChip," Lab Chip, vol. 14, no. 16, pp. 3074-80, Aug 21 2014.
[27] C. W. Chang, C. C. Peng, W. H. Liao, and Y. C. Tung, "Polydimethylsiloxane SlipChip for mammalian cell culture applications," Analyst, vol. 140, no. 21, pp. 7355-65, Nov 07 2015.
[28] I. R. G. Ogilvie, V. J. Sieben, C. F. A. Floquet, R. Zmijan, M. C. Mowlem, and H. Morgan, "Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC," Journal of Micromechanics and Microengineering, vol. 20, no. 6, p. 065016, 2010.
[29] D. B. Wolfe, D. Qin, and G. M. Whitesides, "Rapid prototyping of microstructures by soft lithography for biotechnology," Methods Mol Biol, vol. 583, pp. 81-107, 2010.
[30] C. H. Hsu, C. Chen, and A. Folch, ""Microcanals" for micropipette access to single cells in microfluidic environments," Lab Chip, vol. 4, no. 5, pp. 420-4, Oct 2004.
[31] F. Albert, J. Byung-Ho, H. Octavio, B. D. J., and T. Mehmet, "Microfabricated elastomeric stencils for micropatterning cell cultures," Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 346-353, 2000.
[32] A. T. MV Berridge, KD McCoy, R Wang, "The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts," Biochemica vol. 4, no. 1, pp. 14-19, 1996.
[33] K. M. Kim, S. B. Lee, S. H. Lee, Y. K. Lee, and K. N. Kim, "Comparison of Validity between WST-1 and MTT Test in Bioceramic Materials," Key Engineering Materials, vol. 284-286, pp. 585-588, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *