帳號:guest(3.141.202.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張益瑞
作者(外文):Zhang, Yi-Rui
論文名稱(中文):擴大電容式觸覺感測器工作範圍之研究
論文名稱(外文):Enlarging the Operating Window of Normal Force Detection in Capacitive Tactile Sensors
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):陳榮順
蔡燿全
口試委員(外文):Chen, Rong-Shun
Tsai, Yao-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035519
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:工作範圍結構剛性電容式觸覺感測器
外文關鍵詞:Capacitive tactile sensoroperating windowstructure rigidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:243
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之目的在於不完全犧牲感測靈敏度的前提下,提升電容式觸覺感測器對於正向力量測之工作範圍。
本研究藉由在原有結構層上增加緩衝結構,使得元件受正向力作用時,有兩階段的剛性變化。利用第二階段較大的剛性,犧牲部分靈敏度,來達到擴大工作範圍,並藉由改變緩衝結構的位置,讓使用者能取捨靈敏度及工作範圍。
結果顯示,緩衝結構能顯著增加感測器的工作範圍。且緩衝結構被配置於不同位置時,呈現不同程度之效果,最大可增加135.3%之工作範圍。
The purpose of this study is to enlarge the operating window of capacitive tactile sensors for normal force detection without completely sacrificing its sensitivity.
In this study, by adding stoppers, the sensors under normal force have a two-stage rigidity change. The increased rigidity of the second stage sacrifices a part of the sensitivity to achieve an expansion of the operating window. By changing the stopper’s location, it shows operation flexibility between sensitivity and operating window.
Results show that the stopper significantly increases the operating window of the capacitive tactile sensor, displaying different performances at different locations. The operating window was increased by most 135.3% in this study.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 觸覺感測器之感測機制 2
1.2.2 電容式觸覺感測器之工作範圍 4
1.3 文獻回顧 5
1.3.1 電容式觸覺感測器之設計 5
1.3.2 工作範圍之調變及改善 6
第二章 理論與設計 22
2.1 平行板電容之推導 22
2.1.1 單一介電材質之電容值推導 22
2.1.2 多介電材質之電容值推導 23
2.2 偏移式電極 24
2.2.1 偏移式電極之設計 24
2.2.2 角度演算法 25
2.3 兩階段結構剛性變化 27
2.4 感測靈敏度之定義 29
第三章 模擬評估 36
3.1 模型 36
3.2 正向力模擬結果 36
3.2.1 緩衝結構位置與靈敏度之關係 37
3.2.2 施力區域大小之影響 38
3.2.3 有無緩衝結構之兩階段綜合比較 39
3.3 剪力模擬結果 40
第四章 元件製作與量測 56
4.1 元件結構說明 56
4.2 元件製程概述 56
4.2.1 電極製作 57
4.2.2 PDMS支撐層結構製作 59
4.3 量測平台 61
第五章 結果與討論 72
5.1 正向力量測結果 72
5.1.1 無緩衝結構之正向力量測結果 72
5.1.2 緩衝結構於各位置之正向力量測結果 73
5.1.3 轉折及飽和之定義 74
5.1.4 各位置緩衝結構之工作範圍及靈敏度表現 75
5.2 剪力量測結果 76
第六章 結論與未來展望 98
6.1 結論 98
6.2 未來展望 98
參考文獻 100
[1] K. Jinno, S. Sekido, and P. H. Rittmueller, “Vehicle passenger sensing system and method,” U.S. Patent No. 5,948,031, 1999.
[2] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A review of tactile sensing technologies with applications in biomedical engineering,” Sensors and Actuators A: Physical, vol. 179, pp. 17-31, 2012.
[3] M. Sohgawa, D. Hirashima, Y. Moriguchi, T. Uematsu, W. Mito, T. Kanashima, M. Okuyama, and H. Noma, “Tactile sensor array using microcantilever with nickel–chromium alloy thin film of low temperature coefficient of resistance and its application to slippage detection,” Sensors and Actuators A: Physical, vol. 186, pp. 32-37, 2012.
[4] R. A. Boie, L. W. Ruedisueli, and E. R. Wagner, “Computer mouse or keyboard input device utilizing capacitive sensors,” U.S. Patent No. 5,463,388, 1995.
[5] J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sensors and Actuators A: Physical, vol. 126, no. 2, pp. 312-327, 2006.
[6] H. Muhammad, C. Oddo, L. Beccai, C. Recchiuto, C. Anthony, M. Adams, M. Carrozza, D. Hukins, and M. Ward, “Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger,” Sensors and Actuators A: Physical, vol. 165, no. 2, pp. 221-229, 2011.
[7] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous robot hands,” Robotics and Autonomous Systems, vol. 74, pp. 195-220, 2015.
[8] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, and S. Bauer-Gogonea, “An ultra-lightweight design for imperceptible plastic electronics,” Nature, vol. 499, no. 7459, pp. 458, 2013.
[9] R. M. Podoloff, M. H. Benjamin, J. Winters, and R. F. Golden, “Flexible tactile sensor for measuring foot pressure distributions and for gaskets,” U.S. Patent No. 5,033,291, 1991.
[10] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery,” Current Opinion in Urology, vol. 19, no. 1, pp. 102, 2009.
[11] C.-H. King, M. O. Culjat, M. L. Franco, J. W. Bisley, G. P. Carman, E. P. Dutson, and W. S. Grundfest, “A multielement tactile feedback system for robot-assisted minimally invasive surgery,” IEEE Transactions on Haptics, vol. 2, no. 1, pp. 52-56, 2009.
[12] M. I. Tiwana, A. Shashank, S. J. Redmond, and N. H. Lovell, “Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses,” Sensors and Actuators A: Physical, vol. 165, no. 2, pp. 164-172, 2011.
[13] J. Dargahi, M. Parameswaran, and S. Payandeh, “A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments,” Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 329-335, 2000.
[14] S. Stassi, V. Cauda, G. Canavese, and C. F. Pirri, “Flexible tactile sensing based on piezoresistive composites: A review,” Sensors, vol. 14, no. 3, pp. 5296-5332, 2014.
[15] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 934-942, 2008.
[16] E.-S. Hwang, J.-h. Seo, and Y.-J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 556-563, 2007.
[17] J. G. V. da Rocha, P. F. A. da Rocha, and S. Lanceros-Mendez, “Capacitive sensor for three-axis force measurements and its readout electronics,” IEEE transactions on instrumentation and measurement, vol. 58, no. 8, pp. 2830-2836, 2009.
[18] 鍾易宸, “利用偏移電容式觸覺感測器陣列量測具角度之側向力,” 清華大學動力機械工程學系學位論文, pp. 1-79, 2013.
[19] B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, “Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics,” Advanced Functional Materials, vol. 24, no. 34, pp. 5427-5434, 2014.
[20] Y.-H. Gao, Y.-H. Jen, R. Chen, K. Aw, D. Yamane, and C.-Y. Lo, “Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity,” Sensors and Actuators A: Physical, 2019.
[21] 劉育嘉, “以 CMOS-MEMS 製程結合高分子填充技術發展一可調感測範圍/靈敏度之電容式觸覺感測器,” 清華大學奈米工程與微系統研究所學位論文, pp. 1-92, 2009.
[22] K.-W. Liao, M. T. Hou, H. Fujita, and J. A. Yeh, “Liquid-based tactile sensing array with adjustable sensing range and sensitivity by using dielectric liquid,” Sensors and Actuators A: Physical, vol. 231, pp. 15-20, 2015.
[23] Y.-C. Chung, S.-T. Chuang, T.-Y. Chen, C.-Y. Lo, and R. Chen, “Capacitive tactile sensor for angle detection and its accuracy study,” IEEE Sensors Journal, vol. 16, no. 18, pp. 6857-6865, 2016.
[24] https://en.wikipedia.org/wiki/Spherical_coordinate_system
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *