帳號:guest(3.137.179.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏玎窈
作者(外文):Yen, Ting-Yao
論文名稱(中文):結合熱脫附儀氣相層析質譜儀聯用系統與表面聲波陣列感測器探測奇異果之新鮮度
論文名稱(外文):Freshness Detection of Kiwifruit with TD-GC-MS and Gas Sensing Array Based on Surface Acoustic Wave Technique
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):楊家銘
鍾添淦
口試委員(外文):Yang, Chia-Min
Chung, Tien-Kan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035518
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:97
中文關鍵詞:表面聲波氣體感測器氣相層析儀串聯質譜儀奇異果氣味
外文關鍵詞:Surface acoustic waveGC-MSkiwi aroma
相關次數:
  • 推薦推薦:0
  • 點閱點閱:689
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
表面聲波式surface acoustic wave (SAW) 氣體感測器為一種極具高靈敏度之氣體感測器,適用於低濃度之氣體偵測。本研究中表面聲波式氣體感測器以128°YX-LiNbO3為壓電材料以及Au為電極與感測區,將不同的高分子材料塗佈在感測區上,結合起振電路可得到中心頻率113-114MHz的表面聲波。利用不同高分子材料的特性,所吸附之揮發性有機化合物(Volatile Organic Compounds, VOCs)會有所不同,頻率飄移下降量也會有所差異。藉此聯用四個塗佈不同高分子之表面聲波式晶片同時進行量測,結合TD-GC-MS聯用系統比對奇異果成熟度及有機揮發物之種類與濃度的變化,進而觀察奇異果不同時期之氣味的變化並建立一個完整的數據資料庫。在TD-GC-MS量測結果可得知當奇異果開始成熟時,會伴隨著酯類的大量出現,而隨著熟成天數的增加醇類、酸類、烯類也會開始出現,而在過熟的階段,醇類及酯類的濃度皆會大量增加且種類數量有增加的現象。因此,在感測器之高分子的選用上,則以低極性之聚苯乙烯(PS)及含氟聚合物(CYTOP)來作為酯類之吸附材料;並利用聚乙烯醇(PVA)、聚乙烯醇縮丁醛(PVB) 及N-乙烯基吡咯烷酮(PNVP)作為醇類及酸類之吸附材料。在本研究中可以4-ports陣列式氣體感測器有效的判別奇異果熟成過程中的氣味改變,其中塗佈PVA薄膜之晶片在未熟到成熟時有2510赫茲的變化,成熟到過熟有4572赫茲的變化量,最適合用來偵測奇異果熟成度。未來將尋找專一性較高之高分子材料以提高實驗之分辨率,為首要研究目標。
Surface acoustic wave (SAW) gas sensor is a highly sensitive gas sensor which act high performance of low-concentration gas. In terms of SAW gas sensor, gold interdigital transducers and sensing area are deposited on the 128° YX- LiNbO3 wafer. With various polymer coating on sensing area and connecting to oscillator circuit, 113-114 MHz SAW can be obtained by the frequency counter. Due to the properties of different polymers, the frequency shift differs from the absorption of volatile organic compounds (VOCs). In this research, thermal desorption gas chromatography–mass spectrometry (TD-GC-MS) system has been used for analyzing kiwi fruit VOCs at differ stage. Comparing to the result between 4 port SAW gas sensor system and TD-GC-MS system, the database can be built up and distinguish the kiwi odor during ripeness. With the result of TD-GC-MS, esters are accompanied by kiwi ripeness. With kiwi ripening development, alcohol, alkene, acid concentration will increase. Furthermore, there are numerous alcohol and ester increase at over-ripened stage. As the result, polystyrene (PS) and fluoropolymer (CYTOP), polymers which play the role of sensing material are chosen to be major material to determine the ester development. Moreover, Polyvinyl alcohol (PVA), Poly-vinyl butyral (PVB) and N-vinylpyrrolidone (PNVP) are used to trap alcohol, alkene and acid during kiwifruit over-ripened period. In this research, 4-ports SAW gas sensor effectively discriminates the odor change during the kiwifruit ripening process. Device coated PVA film is most suitable for identifying kiwifruit freshness which has 2510 Hz change from un-ripened to ripened stage, and ripened to over-ripened stage with a change of 4572 Hz. In the future, finding out other polymer membrane to improve the selectivity of this system is the main purpose.
摘要 i
Abstract ii
圖目錄 v
表目錄 viii
1. 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 3
2. 文獻回顧 4
2.1氣體分析法 4
2.1.1 PTR-MS 4
2.1.2 FTIR 5
2.1.3 FID 6
2.1.4 GC-MS 7
2.2 利用GC-MS分析奇異果氣味之相關文獻 11
2.4氣體感測器種類 13
2.4.1半導體氣體感測器(Metal oxide semiconductor gas sensor) 13
2.4.2電化學氣體感測器(electrochemical gas sensor) 14
2.4.3光離子化偵測器 15
2.4.4 觸媒燃燒式氣體感測器(Catalytic combustion gas sensor) 15
2.4.5表面聲波氣體感測器 16
2.4.6各種電子鼻之比較 24
2.5利用電子鼻系統偵測奇異果成熟度之相關文獻 26
3. 實驗裝置與實驗設計 28
3.1 GC-MS 28
3.1.1 採樣管介紹與校正 (Conditioning) 29
3.1.2實驗參數設計 30
3.1.3樣品採樣 31
3.1.4數據分析 33
3.2表面聲波感測器量測系統與環境 35
3.2.1表面聲波感測晶片製備與設計 35
3.2.2振盪電路設計 43
3.2.3塗佈感測薄膜 46
3.2.4實驗所用之儀器與裝置 50
3.2.5感測腔體設計 53
3.2.6整體量測系統與環境 57
4. 實驗結果 59
4.1 TD-GC-MS背景雜訊檢測 59
4.2 TD-GC-MS檢測奇異果氣味 60
4.3表面聲波感測器穩定性測試 69
4.4濕度對表面聲波感測器之影響 72
4.5表面聲波感測器檢測奇異果新鮮度 77
5. 結論與未來展望 92
參考文獻 93
[1] K. J. Ressler, S. L. Sullivan, and L. B. Buck, "Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb," Cell, vol. 79, no. 7, pp. 1245-1255, 1994.
[2] J. Sung, B.-K. Kim, B.-S. Kim, and Y. Kim, "Mass spectrometry-based electric nose system for assessing rice quality during storage at different temperatures," Journal of Stored Products Research, vol. 59, no. Supplement C, pp. 204-208, 2014.
[3] R. S. Blake, P. S. Monks, and A. M. Ellis, "Proton-Transfer Reaction Mass Spectrometry," Chemical Reviews, vol. 109, no. 3, pp. 861-896, 2009.
[4] W. Lindinger, A. Hansel, and A. Jordan, "On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research," International Journal of Mass Spectrometry and Ion Processes, vol. 173, no. 3, pp. 191-241, 1998.
[5] J. Cai, P. Lin, X. Zhu, and Q. Su, "Comparative analysis of clary sage (S. sclarea L.) oil volatiles by GC–FTIR and GC–MS," Food Chemistry, vol. 99, no. 2, pp. 401-407, 2006.
[6] T. J. Christian, "Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels," Journal of Geophysical Research, vol. 108, no. D23, 2003.
[7] P. Singh, H. C. Andola, M. S. M. Rawat, G. J. N. Pant, and V. K. Purohit, "Fourier Transform Infrared (FT-IR) Spectroscopy in An-Overview," Research Journal of Medicinal Plants, vol. 5, no. 2, pp. 127-135, 2011.
[8] M. de Blas, M. Navazo, L. Alonso, N. Durana, and J. Iza, "Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems," Sci Total Environ, vol. 409, no. 24, pp. 5459-69, Nov 15 2011.
[9] J. Tian et al., "Phenotype differentiation of three E. coli strains by GC-FID and GC-MS based metabolomics," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 871, no. 2, pp. 220-6, Aug 15 2008.
[10] R. P. W. Scott. Chiral-GC - The Flame Ionization Detector (FID) from Chiral Gas Chromatography. Available: http://www.chromatography-online.org/Chrial-GC/The-Flame-Ionization-Detector-FID
[11] D. Kumar, B. Singh, K. Bauddh, and J. Korstad, Title: Bio-oil and biodiesel as biofuels derived from microalgal oil and their characterization by using instrumental techniques, pp. 87-96, 2015.
[12] S. Z. Hussain and K. Maqbool, "GC-MS: Principle, Technique and its application in Food Science."
[13] E. A. Souza Silva, S. Risticevic, and J. Pawliszyn, "Recent trends in SPME concerning sorbent materials, configurations and in vivo applications," TrAC Trends in Analytical Chemistry, vol. 43, no. Supplement C, pp. 24-36, 2013.
[14] L. B. Abdulra'uf, W. Hammed, and G. Tan, SPME Fiber for Analysis of Pesticide Residues in Fruits an Vegetables: A Review. 2012, pp. 152-161.
[15] K. Dettmer and W. Engewald, "Ambient air analysis of volatile organic compounds using adsorptive enrichment," Chromatographia, vol. 57, no. 1, pp. S339-S347, 2003.
[16] E. Woolfenden and W. McClenny, "METHOD TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes," Compendium of methods for the determination of toxic organic compounds in ambient air, 1999.
[17] J.-F. Cavalli, X. Fernandez, L. Lizzani-Cuvelier, and A.-M. Loiseau, "Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils," Journal of agricultural and food chemistry, vol. 51, no. 26, pp. 7709-7716, 2003.
[18] M. J. Jordan, C. A. Margaria, P. E. Shaw, and K. L. Goodner, "Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O," (in eng), J Agric Food Chem, vol. 50, no. 19, pp. 5386-90, Sep 11 2002.
[19] M. J. Taylor, K. Hunter, K. B. Hunter, D. Lindsay, and S. Le Bouhellec, "Multi-residue method for rapid screening and confirmation of pesticides in crude extracts of fruits and vegetables using isocratic liquid chromatography with electrospray tandem mass spectrometry," Journal of Chromatography A, vol. 982, no. 2, pp. 225-236, 2002.
[20] S. K. Cho, A. M. Abd El-Aty, H. R. Jeon, J. H. Choi, H. C. Shin, and J. H. Shim, "Comparison of different extraction methods for the simultaneous determination of pesticide residues in kiwi fruit using gas chromatography-mass spectrometry," (in eng), Biomed Chromatogr, vol. 22, no. 7, pp. 727-35, Jul 2008.
[21] C.-Y. Zhang, Q. Zhang, C.-H. Zhong, and M.-Q. Guo, "Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–mass spectrometry," Journal of Chromatography A, vol. 1440, no. Supplement C, pp. 255-259, 2016.
[22] X. M. Wan, R. J. Stevenson, X. D. Chen, and L. D. Melton, "Application of headspace solid-phase microextraction to volatile flavour profile development during storage and ripening of kiwifruit," Food Research International, vol. 32, no. 3, pp. 175-183, 1999.
[23] J. P. Bartley and A. M. Schwede, "Production of volatile compounds in ripening kiwi fruit (Actinidia chinensis)," Journal of Agricultural and Food Chemistry, vol. 37, no. 4, pp. 1023-1025, 1989.
[24] Y. Zhang, K. Chen, S. Zhang, and I. Ferguson, "The role of salicylic acid in postharvest ripening of kiwifruit," Postharvest Biology and Technology, vol. 28, no. 1, pp. 67-74, 2003.
[25] W. Weppner, "Solid-state electrochemical gas sensors," Sensors and Actuators, vol. 12, no. 2, pp. 107-119, 1987.
[26] H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description," Analytical Chemistry, vol. 51, no. 9, pp. 1458-1464, 1979.
[27] D. Pestov, O. Guney-Altay, N. Levit, and G. Tepper, "Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization," Sensors and Actuators B: Chemical, vol. 126, no. 2, pp. 557-561, 2007.
[28] W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator," Sensors and Actuators B: Chemical, vol. 125, no. 2, pp. 422-427, 2007.
[29] A. Bryant, D. L. Lee, and J. F. Vetelino, "A Surface Acoustic Wave Gas Detector," in 1981 Ultrasonics Symposium, 1981, pp. 171-174.
[30] C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless. 1998, pp. 3-5.
[31] 楊啟榮, 李清鋒, and 施建富, "表面聲波生化感測器原理與應用技術," 2004.
[32] J. Kirschner, "Surface Acoustic Wave Sensors (SAWS)."
[33] P. M. Moubarak, P. Ben-Tzvi, and M. E. Zaghloul, "A Self-Calibrating Mathematical Model for the Direct Piezoelectric Effect of a New MEMS Tilt Sensor," Sensors Journal, IEEE, vol. 12, no. 5, pp. 1033-1042, 2012.
[34] H. T. Nagle, R. Gutierrez-Osuna, and S. S. Schiffman, "The how and why of electronic noses," IEEE Spectrum, vol. 35, no. 9, pp. 22-31, 1998.
[35] L. Wei and H. Guohua, "Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose," (in eng), Bioengineered, vol. 6, no. 1, pp. 53-61, 2015.
[36] N. H. Hasanuddin et al., "Design and Development of ZnO Based Gas Sensor for Fruit Ripening Detection," MATEC Web Conf., vol. 78, p. 01109, 2016.
[37] M. Cauchi et al., "Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases," Metabolomics, vol. 10, no. 6, pp. 1113-1120, 2014.
[38] E. Gallego, F. Roca, J. Perales, G. Sánchez, and P. Esplugas, "Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS," Waste management, vol. 32, no. 12, pp. 2469-2481, 2012.
[39] C. Rodriguez-Navas, R. Forteza, and V. Cerda, "Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation," Chemosphere, vol. 89, no. 11, pp. 1426-36, Nov 2012.
[40] K. Dettmer and W. Engewald, "Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds," Analytical and Bioanalytical Chemistry, vol. 373, no. 6, pp. 490-500, 2002.
[41] S. Corparation. (2016). Retention Time Parameters. Available: http://www.shimadzu.com/an/retentiontime_parameters.html
[42] H. Aikata et al., "Telomere Reduction in Human Liver Tissues with Age and Chronic Inflammation," Experimental Cell Research, vol. 256, no. 2, pp. 578-582, 5/1/ 2000.
[43] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004.
[44] Gross J.H. , Hyphenated Methods. In: Mass Spectrometry. Springer, Cham,2017.
[45] Tsow et al., "A Wearable and Wireless Sensor System for Real-Time Monitoring of Toxic Environmental Volatile Organic Compounds," in IEEE Sensors Journal, vol. 9, no. 12, pp. 1734-1740, Dec. 2009.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *