帳號:guest(3.136.25.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江昱欣
作者(外文):Chiang, Yu-Hsin
論文名稱(中文):電光束掃描器的設計與製造
論文名稱(外文):Design and Fabrication of an Electro-Optic Beam Scanner
指導教授(中文):王威智
指導教授(外文):Wang, Wei-Chih
口試委員(中文):黃正昇
陳致真
口試委員(外文):Huang, Cheng-Sheng
Chen, Chih-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035513
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:102
中文關鍵詞:電光束偏轉器光電耦合器稜鏡耦合器掃描設備元件圖像顯示CMOS技術波導技術微機電系統
外文關鍵詞:Electro-optic deflectorElectro-optic couplerPrism couplerScanning deviceImage displayCMOS technologyWaveguideMEMS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:434
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文探討並開發了藉由光電效應產生大彎曲角度的非機械光束偏轉器。所提出的系統在建造和操作過程中創新地使用現有的波導技術和微機電系統(MEMS)製造技術。我們透過改變光電介質中的折射率來造成光束偏轉;透過改變施加的電場大小,造成入射光束的傳播方向的改變。本論文提出了電光束偏轉器並總結了光電耦合器和稜鏡耦合器兩種方法的開發和結果。我們將討論掃描設備開發和建造的參數設計及掃瞄元件的基礎光學性能。掃描設備元件的成功開發將重新定義圖像顯示的最新技術,因為它將促成低成本及高分辨率光學顯示器與現有直徑小於5毫米的CMOS技術之整合。
The thesis describes the development of a non-mechanical optical beam deflector capable of creating a large bending angle using electro-optic effect. The proposed system makes innovative use of existing waveguide technology and microelectromechanical system (MEMS) fabrication techniques in construction and operation. In our approach, beam deflection is achieved by altering the index of refraction in an electro-optic medium; by changing the applied electric field, the propagation direction of incident light beams is altered. This report summarizes the development and results of two approaches, grating coupler and prism coupler, to our proposed electro-optical beam deflector. We will discuss the parametric design, fabrication and initial optical performance of the scanning devices. The successful development of the scanning device will redefine state-of-the-art for image display, as it will lead to low-cost high resolution optical display that can integrate with existing CMOS technology with overall dimension of less than 5x5 mm2.

摘要 I
Abstract II
Acknowledgments III
Table of Content IV
List of Tables VI
List of Figures VIII
Chapter 1. Introduction 1
Chapter 2. Beam Deflection Design 5
2.1. Electro-Optic Effect 5
2.2. Grating Coupler 6
2.3. Comb Grating Design 12
2.4. Deflection Angle as a Function of Grating Period and Applied Voltage 14
2.5. Slab Waveguide Design 15
2.6. Prism Coupler 16
Chapter 3. Deflector Fabrication 19
3.1.1 Wafer Cleaning 21
3.1.2. Electrode Deposition 21
3.1.3. PZT Waveguide 23
3.1.4. Electronic-Beam Lithography 29
3.1.5. Focus Ion Beam 51
3.2. Polydimethylsiloxane (PDMS) Prism 59
Chapter 4. Experiment Results and Discussion 64
4.1. Optical Experiment Setup 64
4.2. Polymer Prism and Grating Couplers 65
4.3. Light Coupling Using PZT Grating Coupler 67
4.3.1. Light Block 68
4.4. Light Propagation Inside PZT Waveguide 73
4.4. Coupling Test with PZT Electrode Grating 80
4.5. Prism Coupling on PZT Waveguide 86
4.6. Summary 88
Chapter 5. Future Work 89
Appendix 91
Lift Off with Ultrasonicator Process 91
Spin Coater 91
Scanning Electron Microscopy 92
Electron Beam Lithography System 93
Inductively Coupled Plasma (ICP) Process 95
Electron Beam Deposition (E-GUN) Process 95
Laser System 96
Contact Information 98
Reference 100

[1] Han, J. Y. (2005). Multi-touch sensing through frustrated total internal reflection. ACM SIGGRAPH 2005 Sketches on - SIGGRAPH 05. doi:10.1145/1187112.1187287
[2] Zhang, B. (n.d.). Processing, characterizations and optical modeling of color filter liquid-crystal-on-silicon microdisplays. doi:10.14711/thesis-b924449
[3] Templier, F. (2016). GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems. Journal of the Society for Information Display, 24(11), 669-675. doi:10.1002/jsid.516
[4] Wei-Chih Wang, “Polymeric Micro Sensors and Actuators,” Sensors 2014, 14, 15065-15066
[5] A. I. Fedorchenko, I. Stachiv, J. Ho, A. Wang, W. C. Wang, “On the forced vibration of the fiber partially immersed in fluid,” Sensors and Actuators A: Physical, 147(2), 498-503, 2008.
[6] Juan Yan, Selso Luanava and Vicenzo Casasata, “ Magnetic Actuation for MEMS Scanners for Reitnal Scanning Displays,” SPIE Proceeding 4985, MOEMS Display and Imaging Systems, Hakan Urey, Editor, 2003, pp. 115-120
[7] Sonnenschein, C. M., & Horrigan, F. A. (1971). Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere. Applied Optics, 10(7), 1600. doi:10.1364/ao.10.001600
[8] Kozlov, V. G., Bulović, V., Burrows, P. E., & Forrest, S. R. (1997). Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature, 389(6649), 362-364. doi:10.1038/38693
[9] H.J. Zwally, B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne, R. Thomas. (2002). ICESat's laser measurements of polar ice, atmosphere, ocean, and land, Geodynamics, 34(3–4), 405-445
[10] Kebin Gu, Wei-Chih Wang, “Design and fabrication of mechanical resonance based sanner,” Journal of Applied Optics, in review, 2016.
[11] W. C. Wang, C. L. Tsui, “Two-dimensional mechanically resonating fiber optic scanning display system,” Optical Engineering, 49(9), 097401-097401-8, 2010.
[12] A. I. Fedorchenko, I. Stachiv, A. B. Wang, W. C. Wang, “Fundamental frequencies of mechanical systems with N-piecewise constant properties,” Journal of Sound and Vibration, 317(3-5), 490-495, 2008. [ELSEVIER]
[13] W. C. Wang, C. L. Tsui, “1-D electro-optic beam steering device’, Sensors and Actuators A Phys., Page1570–1573, 2011
[14] W. C. Wang, J. Luo, A. Jen, “Electro-optic polymer prism beam deflector,” Optical Engineering, 48(11), 114601, 2009.
[15] W. C. Wang, S. Lee, A. Jen, P. Reinahll, D. Nuckley, “Development of an electro-optic scanner for potential endoscope application,” Journal of Medical Devices, 3(2), 027522, 2009.
[16] G. Teowee, J.T. Simpson, Tianji Zhao, M. Mansuripur, J.M. Boulton, D.R. Uhlmann, Electro-optic properties of sol-gel derived PZT and PLZT thin films, Microelectronic Engineering, Volume 29, Issue 1, 1995, Pages 327-330, ISSN 0167-9317, http://dx.doi.org/10.1016/0167-9317(95)00171-9.
(http://www.sciencedirect.com/science/article/pii/0167931795001719)
[17] Chen, C., Wang, W., Chen, P., Chiang, Y., & Wu, W. (2018). Fabricating a 2D imaging device using aerosol PZT process. Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI. doi:10.1117/12.2291353
[18] Ulrich, R., & Torge, R. (1973). Measurement of Thin Film Parameters with a Prism Coupler. Applied Optics, 12(12), 2901. doi:10.1364/ao.12.002901
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *