帳號:guest(3.135.187.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳心耀
作者(外文):Wu, Shin-Yao
論文名稱(中文):SACA細胞自組裝晶片結合快速自動化影像辨識系統及抓取應用於循環腫瘤癌細胞之分析與檢測
論文名稱(外文):Application of high efficient Self-assembled cell-array(SACA) chip and high speed automatic image capture system on clinical detection and analysis for circulating tumor cells
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):楊智勇
陳致真
口試委員(外文):Yang, Chih-Yung
Chen, Chih-chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035512
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:細胞自組裝晶片自動化影像系統細胞抓取
外文關鍵詞:SACA chipAutomatic image systemCell capture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:542
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
 惡性腫瘤(癌症)連續三十六年為台灣人十大死因之首,平均每九分鐘就有一人因為癌症而死亡。癌症之所以難以治療,在於癌症發生初期不容易被發現,若長在特殊位置更難以開刀去除。即使切除了原位癌,卻有相當的機率發生癌症轉移,最終遍布身體各處,常常使治療的時間拉長、難度提升。癌症細胞要轉移至血液循環系統成為「循環腫瘤細胞」(Circulating Tumor Cell, CTC),近年的研究表示循環腫瘤細胞的多寡與病情的嚴重性及預後有相當的關係。因此偵測與分析循環腫瘤細胞是近年來重要的研究方向之一,若能於癌症早期發現循環癌細胞,便能積極做早期治療。
  本論文利用微流體的特性,以PC為基材做出結構。細胞在螢光抗體標定之後,藉由重力和液體流動產生的側向拉力影響下產生單層緊密排列的自組裝陣列。在SACA晶片觀測區域形成二維陣列,最後以自動化影像檢測系統觀測循環腫瘤癌細胞並計算數量,並通過IRB審查取得醫院中大腸癌病患的血液檢體,而後與流式細胞儀的結果作比較。相較於分析實驗室細胞株的結果,直接分析檢體具有臨床意義且在大量的實驗修正流程後,可以建立有效的臨床分析步驟與數據。
  此研究方法製作成本較低,且結構相當簡易,檢體在SACA晶片上三分鐘內即可完成沉降排列。目前,晶片已從原先PMMA壓合SU8載玻片發展成可量產型之塑膠晶片,本論文將著重於建立自動化影像檢測系統與細胞捉取系統。1個觀測區域僅需9分鐘就能將所有螢光資訊儲存下來。除了縮短檢測的時間及減輕實驗人員負擔之外,更可以在檢測後取出循環腫瘤細胞做後續的細胞實驗。本研究的主要成果為:1.可運用於臨床上的檢測裝置。2.更快速的自動化檢測設備。3.細胞捉取設備。未來此檢測方法會應用在醫院中的癌症相關的研究上,捕捉循環腫瘤細胞有助於後續培養或生化分析等實驗。
Malignant tumor is the first of top ten death causes in Taiwan. The difficulty is not only the treatment of malignant tumor eradication, and it is more difficult to prevent cancer metastasis. It makes treatment time stretched and hard. The presence of circulating tumor cells (CTC), known as metastasis-derived cells in the circulation, is associated with a reduced survival in colorectal cancer patients. CTC are also an important indicator of tumor metastasis which contributes to the vast majority of cancer-related deaths. As a strong prognostic factor for overall survival in patients with metastatic cancers, much effort has been exerted to develop means to enumerate CTC and analyze their biological properties. Nevertheless, current approaches on CTC analysis suffered a number of drawbacks including high cost, labor extensive, inefficient, and damage to the isolated CTC. The main objective of this report is to improve the efficiency and sensitivity in identification and characterization of CTC derived from CRC. This report uses a fluid feature for detecting CTCs. Self –Assembled Cell Array(SACA) chip makes up with PC substrate. SACA chip rapidly make assemble cells become into a highly-dense monolayer under a microscope for in-parallel 2D image acquiring.. In the end CTCs can be count by the fluorescence microscope. It has IRB cooperated plan with hospital and allowed to get colorectal cancer and breast cancer patient blood sample to do the clinical research.
This report provides an inexpensive and simple way to make chip and the process costs less than ten minutes. It also builds up the automatic imaging and in-situ cell capturing system to shorten the process time and isolate CTCs after process.
摘要 ii
Abstract iii
誌謝 viv
總目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 3
第二章 文獻回顧 6
2.1 細胞篩選方法 6
2.2免疫標定 6
2.2.1免疫抗體捕捉 7
2.2.2免疫磁珠分離 10
2.2.3流式細胞儀(Flow Cytometer) 11
2.2.4 CellSearch系統檢測循環腫瘤細胞 13
2.3非免疫標定 16
2.3.1細胞大小(Cell Size) 16
2.3.2密度梯度分離(Density) 21
2.3.3二維陣列 22
2.4文獻總結與研究目標 24
第三章 實驗設計 25
3.1 螢光檢測系統特色 25
3.2 實驗材料準備 26
3.2.1 細胞株介紹 26
3.2.2 藥品介紹 27
3.3藥品製備處理 28
3.3.1 細胞懸浮液 28
3.4 第一代微流道井式排列平台 29
3.4.1第一代平台設計及原理 30
3.4.2 第一代平台製成及組裝 32
3.4.3 第一代微流道井式細胞排列結果簡介 34
3.5 IRB癌症病患檢體測試 37
3.5.1 檢體分離及染色流程 37
3.6.2 循環腫瘤細胞影像辨識 39
3.6 自動影像檢測系統 40
3.6.1自動影像檢測系統設計 42
3.6.2 自動影像檢測系統控制流程 44
3.7 細胞自組裝排列沉降晶片 45
3.7.1 沉降晶片設計 45
3.7.2 晶片製作方式 46
3.8 細胞捉取裝置 48
3.8.1 細胞捉取裝置設計 49
3.8.2 玻璃針製作 49
第四章 結果與討論 59
4.1 IRB癌症病患檢測 59
4.1.1 循環腫瘤細胞統計 60
4.2 自動檢測系統影像拼接 66
4.2.1第一代自動影像檢測系統 67
4.2.2第二代自動影像檢測系統 68
4.2.3 第二代影像拼接測試……………………………………………………69
4.2.4 第三代自動影像檢測系統………………………………………………70
4.3 細胞捉取裝置測試 74
4.3.1 玻璃針管製作 74
4.3.2 細胞捉取測試 75
4.3.改善問題………………………………………………………………..78
4.4 SACA自組裝陣列塑膠晶片與原先SACA晶片比較 79
4.5比較MCRC臨床期別PB&IMVB CTCS之數量關係 80
第五章 結論 80
第六章 未來工作 82
參考文獻 84
[1] V. Plaks, C. D. Koopman, and Z. Werb, “Circulating Tumor Cells,” Science (80-. )., vol. 341, no. 6151, pp. 1186–1188, 2013.
[2] B. Faltas, “Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells,” Front. Oncol., vol. 2, no. July, pp. 1–7, 2012.
[3] S. Koscielny and M. Tubiana, “Parallel progression of tumour and metastases.,” Nat. Rev. Cancer, vol. 10, no. 2, p. 156, 2010.
[4] N. Aceto, A. Bardia, D. T. Miyamoto, M. C. Donaldson, B. S. Wittner, J. a. Spencer, M. Yu, A. Pely, A. Engstrom, H. Zhu, B. W. Brannigan, R. Kapur, S. L. Stott, T. Shioda, S. Ramaswamy, D. T. Ting, C. P. Lin, M. Toner, D. a. Haber, and S. Maheswaran, “Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis,” Cell, vol. 158, no. 5, pp. 1110–1122, 2014.
[5] C. Alix-Panabières, K. Pantel, and I. Lokody, “Challenges in circulating tumour cell research,” Nat. Rev. Cancer, vol. 14, no. 3, p. 152, 2014.
[6] S. Nagrath, L. V Sequist, S. Maheswaran, D. W. Bell, P. Ryan, U. J. Balis, R. G. Tompkins, and D. a Haber, “NIH Public Access,” vol. 450, no. 7173, pp. 1235–1239, 2011.
[7] S. L. Stott, C.-H. C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. a. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. a. Haber, and M. Toner, “Isolation of circulating tumor cells using a,” October, vol. 107, no. 35, pp. 18392–7, 2010.
[8] U. A. Gurkan, T. Anand, H. Tas, D. Elkan, A. Akay, H. O. Keles, and U. Demirci, “Controlled viable release of selectively captured label-free cells in microchannels,” Lab Chip, vol. 11, no. 23, p. 3979, 2011.
[9] K. Hoshino, Y.-Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip, vol. 11, no. 20, p. 3449, 2011.
[10] R. a Hoffman and W. B. Britt, “of Cell,” J. Histochem. Cytochem., vol. 27, no. 1, pp. 234–240, 1979.
[11] S. Bevilacqua, M. Gallo, R. Franco, A. Rossi, A. De Luca, G. Rocco, G. Botti, C. Gridelli, and N. Normanno, “A ‘live’ biopsy in a small-cell lung cancer patient by detection of circulating tumor cells,” Lung Cancer, vol. 65, no. 1, pp. 123–125, 2009.
[12] M. G. Krebs, R. Sloane, L. Priest, L. Lancashire, J. M. Hou, A. Greystoke, T. H. Ward, R. Ferraldeschi, A. Hughes, G. Clack, M. Ranson, C. Dive, and F. H. Blackhall, “Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer,” J. Clin. Oncol., vol. 29, no. 12, pp. 1556–1563, 2011.
[13] M. C. Miller, G. V Doyle, and L. W. M. M. Terstappen, “Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer.,” J. Oncol., vol. 2010, p. 617421, 2010.
[14] D. R. Gossett, W. M. Weaver, A. J. MacH, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem., vol. 397, no. 8, pp. 3249–3267, 2010.
[15] H. Wei, B. Chueh, H. Wu, E. W. Hall, C. Li, R. Schirhagl, J.-M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device.,” Lab Chip, vol. 11, no. 2, pp. 238–245, 2011.
[16] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-Cell Enzyme Concentrations , Kinetics , and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays Single-Cell Enzyme Concentrations , Kinetics , and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays,” Anal. Chem., vol. 78, no. 14, pp. 4925–4930, 2006.
[17] S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip, vol. 12, no. 13, p. 2369, 2012.
[18] D. Issadore, H. Shao, J. Chung, A. Newton, M. Pittet, R. Weissleder, and H. Lee, “Self-assembled magnetic filter for highly efficient immunomagnetic separation.,” Lab Chip, vol. 11, no. 1, pp. 147–151, 2011.
[19] J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells.,” Lab Chip, vol. 10, no. 7, pp. 837–842, 2010.
[20] M. E. Warkiani, B. L. Khoo, D. S.-W. Tan, A. A. S. Bhagat, W.-T. Lim, Y. S. Yap, S. C. Lee, R. a Soo, J. Han, and C. T. Lim, “An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells.,” Analyst, vol. 139, no. 13, pp. 3245–55, 2014.
[21] M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafran, and N. Zurgil, “A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells.,” Lab Chip, vol. 6, no. 8, pp. 995–1000, 2006.
[22] S. Yamamura, H. Kishi, Y. Tokimitsu, S. Kondo, R. Honda, S. Ramachandra Rao, M. Omori, E. Tamiya, and A. Muraguchi, “Single-cell microarray for analyzing cellular response,” Anal. Chem., vol. 77, no. 24, pp. 8050–8056, 2005.
[23] S. K. Arya, B. Lim, A. R. A. Rahman, S. Data, and S. Fig, “Enrichment, detection and clinical significance of circulating tumor cells.,” Lab Chip, vol. 13, no. 11, pp. 1995–2027, 2013.
[24] T.-J. Chen, J.-K. Wu, Y.-C. Chang, C.-Y. Fu, T.-P. Wang, C.-Y. Lin, H.-Y. Chang, C.-C. Chieng, C.-Y. Tzeng, and F.-G. Tseng, “High-efficiency rare cell identification on a high-density self-assembled cell arrangement chip,” Biomicrofluidics, vol. 8, no. 3, p. 036501, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *