帳號:guest(3.15.22.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高子雯
作者(外文):Kao, Zi-Wen
論文名稱(中文):氮化矽屏蔽奈米化矽基氮化鎵之回融蝕刻現象研究
論文名稱(外文):The study of the meltback etching phenomenon for silicon nitride sealed nanotextured GaN-on-Si
指導教授(中文):葉哲良
指導教授(外文):Yeh, J. Andrew
口試委員(中文):林育芸
侯帝光
劉嘉哲
口試委員(外文):Lin, Yu-Yun
Hou, Ti-Kuang
Liu, Jia-Zhe
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:奈米結構強度提升氮化鎵磊晶回融蝕刻
外文關鍵詞:nanotexturestress strengtheningGaNepitaxyMelt-back etching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:815
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究透過奈米化矽基板分散應力之效果,提升基板之強度,後續沉積保護層於奈米結構上,藉此保護奈米結構並控制薄膜應力,使其強化基板之效果不受影響以及降低氮化鎵磊晶後之基板翹曲現象,並針對新型基板產生回融蝕刻之原因作探討,以利後續磊晶製程順利進行。 氮化鎵(GaN)因具有高崩潰電壓及較寬之直接能隙,成為受矚目之功率元件材料,而同材質之基板製作困難且成本高,故選擇利用異質磊晶之方式,其中以矽基板最具競爭力,因其成本較低、可大面積成長,但因GaN-on-Si為異質磊晶,會衍生出許多問題須克服,其中因材料間之晶格不匹配以及熱膨脹係數差異大而導致磊晶過程中基板翹曲(warpage)及破片問題最為嚴重。 利用金屬輔助化學蝕刻(Metal-Assisted Chemical Etching)製作深度為4 μm、寬度為100 nm之奈米級結構於矽基板以分散應力提升基板強度,藉此解決異質磊晶時應力過大所造成之破片現象,並於奈米結構上沉積二氧化矽、氮化矽保護層覆蓋之,以防止微粒附著於高深寬比之結構中,進而影響基板強化效果;於高溫環境下成長氮化鎵於矽基板上時,如腔體中的Ga與矽基板接觸到會導致回融蝕刻現象的發生,於此研究中列出發生回融蝕刻發生時常見之情形,並針對每個情形做驗證及探討,期望能降低破片率提升產能並精進磊晶品質。
In this research we use Metal-Assisted Chemical Etching method to create the nanostructure (4 μm high and width for 100 nm) on the Si (111) substrate. Nanostructure can disperse the stress on the silicon substrate which can elevate the strength of the wafer. After that we use APCVD to deposit silicon dioxide thin film and PECVD deposited silicon nitride as a protection layer on the nanostructure. The protection layer protect nanostructure, in order to prevent the contamination problems and reduce the warping condition after GaN epitaxy. In this work, we found that while the high temperature growth of GaN on the nanotextured silicon wafer resulted in Melt-back etching to occur in some portion of the surface area on the substrate. Therefore, we discuss the cause of this phenomenon.
Gallium nitride (GaN) is the most promising semiconductor technology for high performance devices in recent years, which is in the form of epitaxial HEMT transistors on different kinds of substrate materials. GaN on Si (111) is an important structure in high power devices but heteroepitaxy of GaN on Si exist some problems in the fabrication. The most serious problem is the large amount of warping change in the epitaxy process and it will cause the crack of Si wafer or GaN thin film.
In this experiment, we provide a new strengthening nanotextured silicon substrate. This new nanotextured silicon substrate can lower cracking rate and endure the high stress caused by the epitaxy process.
摘要................................................................................................................................ I
Abstract ......................................................................................................................... II
致謝.............................................................................................................................. III
目錄.............................................................................................................................. IV
圖目錄........................................................................................................................ VII
表目錄........................................................................................................................ XII
符號說明................................................................................................................... XIII
第一章 緒論 ............................................................................................................. 1
1.1 研究背景 ..................................................................................................... 1
1.2 矽基氮化鎵 ................................................................................................. 6
A. 熱膨脹係數不匹配(Thermal expansion mismatch) ................ 7
B. 晶格常數不匹配(Lattice mismatch) ........................................ 8
C. 回融蝕刻(Melt-back etching) .................................................. 9
1.3 文獻回顧 ................................................................................................... 11
1.3.1 應力消彌技術(Stress engineering) ........................................ 12
1.3.2 矽基板強度提升技術.................................................................. 16
1.4 研究動機 ................................................................................................... 21
1.5 論文架構 ................................................................................................... 22
第二章 理論與原理 ............................................................................................... 23
2.1 力學理論 ................................................................................................... 23
2.1.1 脆性材料之抗折強度.................................................................. 23
2.1.2 奈米結構之應力分散效應與基板強度提升.............................. 25
2.2 製程原理 ................................................................................................... 31
2.2.1 金屬輔助化學蝕刻...................................................................... 31
2.2.2 化學氣相沉積.............................................................................. 33
第三章 實驗設計 ................................................................................................... 36
3.1 實驗設計與流程 ....................................................................................... 36
3.2 矽(111)金屬輔助化學蝕刻製備奈米結構 ......................................... 43
3.3 保護層材料優化及製備 ........................................................................... 44
3.3.1 常壓化學氣相沉積(Atmospheric Pressure CVD,APCVD) 44
3.3.2 電漿增強化學氣相沉積(Plasma-Enhanced CVD, PECVD) 45
3.4 氮化鋁緩衝層覆蓋情形觀測 ................................................................... 45
第四章 實驗結果 ................................................................................................... 46
4.1 矽(111)基板製備奈米結構 ................................................................. 46
4.2 保護層薄膜沉積 ....................................................................................... 47
4.2.1 APCVD二氧化矽保護層沉積 ................................................... 47
4.2.2 PECVD氮化矽保護層沉積 ....................................................... 47
4.3 奈米化基板強度測試 ............................................................................... 49
4.4 奈米化基板之熱傳導係數量測 ............................................................... 52
4.5 Blue tape之汙染微粒檢測 ....................................................................... 54
4.6 氮化鋁緩衝層磊晶溫度觀測及覆蓋情形觀測 ....................................... 58
4.7 氮化鎵磊晶實驗 ....................................................................................... 64
4.8 回融蝕刻現象 ........................................................................................... 72
第五章 結論 ........................................................................................................... 77
未來工作...................................................................................................................... 79
參考文獻...................................................................................................................... 80
附錄.............................................................................................................................. 84
附錄A. 晶圓翹曲量測儀.............................................................................. 84
附錄B. 晶圓翹曲量測(ASTM F534) ..................................................... 85
附錄C. 雷射閃光法熱擴散及熱傳導係導分析.......................................... 86
1. Alpass, C.R., et al., Nitrogen diffusion and interaction with dislocations in single-crystal silicon. Journal of Applied Physics, 2009. 105(1): p. 6.
2. Bai, F., et al., Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer. Applied Surface Science, 2013. 273: p. 107-110.
3. Gonzalez, M., et al. GaN growth on patterned silicon substrates. A thermo mechanical study on wafer bow reduction. in 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. 2012.
4. KyuKim, D., Effect of AlN buffer thickness on stress relaxation in GaN layer on Si (1 1 1). Solid-State Electronics, 2007. Volume 51, Issue 7, Pages 1005-1008.
5. Corporation, M.E., Mitsubishi Electric Develops High-output, High-efficiency GaN Power Amplifier on Si Substrate for Mobile Communications Base Stations. 2012.
6. Olesinski, R.W., N. Kanani, and G.J. Abbaschian, The Ga−Si (Gallium-Silicon) system. Bulletin of Alloy Phase Diagrams, 1985. 6(4): p. 362-364.
7. Gil, B., III-Nitride Semiconductors and their Modern Devices. 2013.
8. Taiwan, C.S., 以大尺寸晶圓降低LED成本. 2013.
9. Takeuchi, T., et al., Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. Journal of Crystal Growth, 1991. 115(1): p. 634-638.
10. Yang, J.W., et al., High quality GaN–InGaN heterostructures grown on (111) silicon substrates. Applied Physics Letters, 1996. 69(23): p. 3566-3568.
11. Perkins, N.R., et al., Halide Vapor Phase Epitaxy of Gallium Nitride Films on Sapphire and Silicon Substrates. MRS Proceedings, 2011. 395.
12. Watanabe, A., et al., The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. Journal of Crystal Growth, 1993. 128(1): p. 391-396.
13. Kung, P., et al., High quality AIN and GaN epilayers grown on (00⋅1) sapphire, (100), and (111) silicon substrates. Applied Physics Letters, 1995. 66(22): p. 2958-2960.
14. Amano, H., et al., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 1986. 48(5): p. 353-355.
15. Nikishin, S.A., et al., High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia. Applied Physics Letters, 1999. 75(14): p. 2073-2075.
16. Kim, D.K., Effect of AlN buffer thickness on stress relaxation in GaN layer on Si (111). Solid-State Electronics, 2007. 51(7): p. 1005-1008.
17. Feltin, E., et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Applied Physics Letters, 2001. 79(20): p. 3230-3232.
18. 吳晉瑋, 運用應力補償層及奈米結構技術於新型GaN磊晶矽基板之研究 Silicon Substrate for GaN Epi-Growth by Stress Compensation Layer and Nanostructure Technique. 2015.
19. http://www.iknife.org/viewthread.php?action=printable&tid=145230.
20. Jurkschat, K., et al., Onset of slip in silicon containing oxide precipitates. Journal of Applied Physics, 2001. 90(7): p. 3219-3225.
21. Kashyap, K., et al., Nanostructured silicon flapping wing with higher strength and low reflectivity for solar powered MEMS aircraft. 2014. 648-651.
22. Kashyap, K., et al., Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture. Scientific Reports, 2015. 5: p. 13.
23. 陳弘毅, 破裂力學在結構低應力破裂之應用. 2007.
24. 曹凱揚, 多晶/非晶矽屏蔽奈米結構應用於氮化鎵磊晶驗證之強化矽基板. 2017.
25. Schoenfelder, S., et al., Investigations of the influence of dicing techniques on the strength properties of thin silicon. Microelectronics Reliability, 2007. 47(2): p. 168-178.
26. H. Xiao, 羅., 張鼎張,, 半導體製程技術導論. 歐亞書局, 2005.
27. 黃致凱, 壓痕技術於受快速熱退火與機械疲勞之電漿輔助化學氣相沉積氮化矽薄膜之破壞與介面特性檢測與分析. 2011.
28. 彭德軒, 屏蔽式奈米化技術應用於半導體產業之高強度矽基板. 國立清華大學奈米工程與微系統研究所碩士論文, 2015.
29. Chun, D.W., et al., Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching. Nanotechnology, 2016.
30. Kashyap, K., et al., Rollable Silicon IC Wafers Achieved by Backside Nanotexturing. IEEE ELECTRON DEVICE LETTERS, 2015. VOL. 36, NO. 8.
31. Kumar, A., et al., Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures. Sensors, 2016.
32. Shimura, F., Semiconductor silicon crystal technology. Elsevier, 2012.
33. Szymańskia, T., et al., Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application. Journal of Vacuum Science & Technology A, 2015. 33.
34. Zang, K.Y., et al., Evolution of AlN buffer layers on silicon and effects on the properties of epitaxial GaN films. physica status solidi (c), 2003. Volume0, Issue7, Pages 2067-2071.
35. Masolin, A., et al., Thermo-mechanical and fracture properties in single-crystal silicon. Journal of Materials Science, 2012. Volume 48, Issue 3, pp 979–988.
36. 黃冠庭, 高強度屏蔽奈米化矽基板之應力控制以抑制氮化鎵磊晶後基板翹曲. 國立清華大學奈米工程與微系統研究所碩士論文 2017.
37. Charavel, R., B. Olbrechts, and J.-P. Raskin, Stress release of PECVD oxide by RTA. SPIE, 2003. 5116: p. 11.
38. 張守諒, 氮化矽層抑制氮化鎵成長於(111)矽基板之回熔蝕刻現象研究. 國立交通大學材料科學與工程研究所碩士論文, 2014.
39. 張鈞富, 高導熱鋁基複合材料(Gr/A356)之擠壓鑄造製程與性質研究 A Study on Fabrication and Properties of High Thermal Conductivity Aluminum Composite(Gr/A356) by Squeeze Casting 國立交通大學材料科學與工程研究所碩士論文, 2010.
40. 許育瑋, 六吋高強度屏蔽奈米化矽基板之GaN磊晶可行性驗證. 國立清華大學奈米工程與微系統研究所碩士論文, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *