帳號:guest(3.145.152.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋喬安
作者(外文):Sung, Chiao-An
論文名稱(中文):應用於微型化熱致動壓阻式質量感測振盪器之介面電路設計
論文名稱(外文):Interface Circuit Design to Enable Miniaturization of Thermal-Piezoresistive Oscillators for Mass Sensing Applications
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):盧向成
林宗賢
蔡宗亨
陳榮順
口試委員(外文):Lu, Shiang-Cheng
Lin, Tsung-Hsien
Tsai, Tsung-Heng
Chen, Rong-Shun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035508
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:79
中文關鍵詞:晶片系統構裝介面電路設計積體化與微型化熱致動式CMOS-MEMS共振器與振盪器巴克豪森振盪條件質量/細懸浮微粒感測系統
外文關鍵詞:System in packageInterfaced circuitsIntegration and MiniaturizationCMOS-MEMS TPRsCMOS-MEMS TPOsBarkhausen criteriaMass/particle sensors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:774
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究內容針對熱致動式微機械共振器進行介面電路設計,並實現熱致動式微機械振盪器。先前振盪系統是運用儀器級鎖相迴路放大器(Zurich: HF2LI, Lock-in amplifier)搭配Bias-Tee,接著藉由商用IC組合之PCB電路板取代儀器,並搭配Bias-Tee使MEMS元件形成振盪系統,然而商用IC組合之PCB電路板以及Bias-Tee造成系統昂貴且占據龐大的體積:分別為90平方公分和88.6平方公分,其阻礙商品化需求中之微型化、積體化與低成本,因此本研究採用國家晶片中心提供之TSMC 0.18 μm CMOS process technology平台進行介面電路設計,實現熱致動式微機械共振器與介面電路之晶片系統構裝,使系統實現微型化、低成本、較低功率(2.73 W vs. 20 mW)之質量/細懸浮微粒感測器,最終希望將產品應用於物聯網中,完成整合型環境懸浮微粒感測器中樞平台。
論文內容涵蓋介面電路設計與量測、微機械元件設計、製程與量測、振盪器性能模擬、直流電壓切換之驅動量測以及質量/細懸浮微粒感測量測等。系統於大氣環境振盪後進行閉迴路量測,目前系統之相位雜訊展現1/f-2趨勢良好的線性表現,此微機械振盪器工作頻率為838 kHz,於10 kHz和100 kHz頻率偏移的相位雜訊表現分別為-82.1 dBc/Hz以及-81.4 dBc/Hz,目前微型化振盪系統擁有150 Hz的頻率解析度,對應到質量感測解析度為77 pg,未來針對介面電路進行改善,有望成為細懸浮微粒(PM2.5)感測器。
This work focuses on the integrated circuit design for CMOS-MEMS-based thermal-piezoresistive oscillators (TPOs). Conventional TPOs necessitate bulky discrete circuit components, which impedes integration and miniaturization of the microsystems. The proposed circuit implemented using TSMC 0.18 μm CMOS technology serves as sustaining amplifiers and biasing circuits for previously developed CMOS-MEMS thermal-piezoresistive resonators (TPRs), thus achieving TPOs with small form factor, targeted for mass/particle sensing applications. For initial validation of the TPO, a lock-in amplifier with phase locked loop (Zurich: HF2LI, Lock-in amplifier) was used to sustain oscillation. Then to reduce the size and cost, board-level electronics were used for replacing the expensive and enormous instrument like lock-in amplifier with phase locked loop. In this work, we achieve a system in package (SiP), where the CMOS interface circuits are designed to enable the closed-loop oscillation with much lower power consumption (2.73 W vs. 20 mW). The commercial PCB electronics and Bias-Tees occupy around 90 cm2 and 88.6 cm2 respectively, while the proposed one only takes much less than 1cm2. All of the commercial available discrete components are replaced by the integrated circuits developed in this work to investigate the difference between abovementioned configurations in terms of the sensing performance, thus achieving a miniaturized low-power sensing system with cost reduction targeted for air quality monitoring, such as aerosol sensors. The closed-to-career phase noise is demonstrated with 1/f-2 trend, indicating excellent linearity of the resonator operation and with phase noise of -82.1 dBc/Hz and -81.4 dBc/Hz at 10 kHz and 100 kHz offsets respectively at a carrier frequency of 838 kHz in ambient pressure, as a result suitable for sensor applications. The miniaturized CMOS-MEMS TPO system features a frequency resolution of 150 Hz, thus corresponding to a mass resolution of 77 pg, which would potentially serve as aerosol (PM2.5) sensors.
目錄
目錄 i
圖目錄 iii
表目錄 viii
摘要 1
致謝 4
第一章 前言 6
1-1 研究動機與背景 6
1-2 文獻回顧 13
第二章 原理分析與設計 19
2-1熱致動壓阻感測式振盪器運作原理 20
2-1-1 CMOS熱致動壓阻感測式振盪器運作原理 22
2-1-2 SOI熱致動壓阻感測式振盪器運作原理 24
2-2 熱致動壓阻感測共振器運作原理與模型建立 27
2-2-1 CMOS-MEMS共振器 28
2-2-2 SOI-MEMS共振器 29
2-3 CMOS介面電路設計 30
2-3-1 偏壓電路設計介紹 34
2-3-2 支撐放大電路設計介紹 35
第三章 製作過程與結果 39
3-1 CMOS-MEMS元件製程與結果 39
3-2 SOI-MEMS元件製程與結果 42
3-3 積體電路晶片結果 45
第四章 量測結果探討與分析 46
4-1 開迴路量測 47
4-2 閉迴路量測 53
4-3 質量感測器量測 Nano-Printer量測 59
4-3-1 Nano-printer量測 59
4-3-2 煙霧量測 60
4-4 直流電壓切換之驅動量測 65
4-4 支撐放大電路量測 66
第五章 結論與未來研究 71
參考文獻 72

[1] P. Angenendt, “Progress in protein and antibody microarray technology,” Drug Discovery Today, vol. 10, no. 7, pp. 503-511, Apr. 2005.
[2] A. Sreekumar, M. K. Nyati, S. Varambally, T. R. Barrette, D. Ghosh, T. S. Lawrence, and A. M. Chinnaiyan, “Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins,” Cancer Research, vol. 61, pp. 7585-7593, Oct. 2001.
[3] R. L. Woodbury, S. M. Varnum, and R. C. Zangar, “Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA,” Journal of Proteome Research, vol. 1, no. 3, pp. 233-237, 2002.
[4] I. Balboni, S. M. Chan, M. Kattah, J. D. Tenenbaum, A. J. Buttle, and P. J. Utz, “Multiplexed protein array platforms for analysis of autoimmune diseases,” Annul Review of Immunology, vol. 24, pp. 391-418, Jan. 2006.
[5] M. L. Johnston, I. Kymissis, and K. L. Shepard, “FBAR-CMOS oscillator array for mass-sensing applications,” IEEE Sensors Journal, vol. 10, pp. 1042-1047, Jan. 2010.
[6] H. Wang, Y. Chen, A. Hassibi, A. Scherer, and A. Hajimiri, “A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet,” Tech. Dig., IEEE Int. Solid-State
Circuits Conf., San Francisco, California, February 8-12, 2009, pp.437-439.
[7] R. Ruby, et al., “Positioning FBAR technology in the frequency and timing domain,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.59, no. 3, pp.334-345. March 2012.
[8] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Micromechanical hollow-disk ring resonators,” Proceedings, 17th Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’17), Maastricht, The Netherlands, Jan. 25-29, 2004, pp. 821-824.
[9] J. T. M. van Beek, G. J. A. M. Verheijden, G. E. J. Koops, K. L. Phan, C. van der Avoort, J. van Wingerden, D. Ernur Badaroglu, and J. J. M. Bontemps, “Scalable 1.1 GHz fundamental mode piezoresistive silicon MEMS resonator,” Technical Digest, IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, Dec. 10-12, 2007, pp. 411-414.
[10] F. Chen, J. Brotz, U. Arslan, C.-C. Lo, T. Mukherjee, and G. K. Fedder, “CMOS-MEMS resonant RF mixer-filters,” Tech. Digest, 18th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS’05), Miami Beach, Florida, Jan. 30-Feb. 3, 2005, pp. 24-27.
[11] J. L. Lopez, J. Verd, J. Teva, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal, and N. Barniol, “Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” Journal of Micromechanics and Microengineering (JMM), vol. 19, no. 1, pp. 13-22, Jan. 2009.
[12] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Optical excitation of micro-mechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), 1991, pp. 160-165.
[13] O. Brand, H. Baltes, and U. Baldenweg, “Thermally excited silicon oxide bridge resonators in CMOS technology,” Journal of Micromechanics and Microengineering (JMM), 2 (1992) 208-210.
[14] I. Voiculescu, M. E. Zaghloul, R. A. McGill, E. J. Houser, and G. K. Fedder, “Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons,” IEEE Sensors Journal, vol. 5, no. 4, August 2005.
[15] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A. zaplewski, B. Ilic, B. H. Houston, H. G. Craighead, and J. M. Parpia, “Resistively actuated micromechanical dome resonators,” Proceedings of SPIE, 2004, pp. 51-58.
[16] S. J. Hyeong, and O. Brand, “High-Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment,” IEEE Journal of Microelectromechanical Systems (JMEMS), vol. 17, pp. 483-493, 2008.
[17] A. Rahafrooz and S. Pourkamali, “Thermal actuation, a suitable mechanism for high frequency electromechanical resonators,” Proceedings, 23rd Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 200-203.
[18] A. Rahafrooz and S. Pourkamali, “High-frequency thermally actuated electromechanical resonators with piezoresistive readout,” IEEE Transactions on Electron Devices, vol. 58, pp. 1205-1214, 2011.
[19] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Sub-100ppb/ºC temperature stability in thermally actuated high frequency silicon resonators via degenerate phosphorous doping and bias current optimization,” Proceedings, IEEE International Electron Device Meeting (IEDM), San Francisco, CA, Dec. 6-8, 2010, pp. 7.5.1-4.
[20] A. Rahafrooz, and S. Pourkamali, “Fully micromechanical piezo-thermal oscillators,” Proceedings, IEEE International Electron Device Meeting (IEDM), San Francisco, CA, Dec. 6-8, 2010, pp. 7.2.1-4.
[21] A. Rahafrooz and S. Pourkamali, “Active self-Q-enhancement in high frequency thermally actuated M/NEMS resonators,” Proceedings, 24th IEEE Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’11), Cancun, Mexico, January 23-27, 2011, pp. 760-763.
[22] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Temperature compensated single-device electromechanical oscillators,” Proceedings, 24th IEEE Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’11), Cancun, Mexico, January 23-27, 2011, pp. 801-804.
[23] A. Rahafrooz and S. Pourkamali, “Controlled batch fabrication of crystalline silicon nanobeam-based resonant structures,” Proceedings, 24th IEEE Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’11), Cancun, Mexico, January 23-27, 2011, pp. 1345-1348.
[24] E. Mehdizadeh, J. C. Wilson, A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Aerosol impactor with embedded MEMS resonant mass balance for real-time particulate mass concentration monitoring,” Dig. of Tech. Papers, International Conference on Solid State Sensors, Actuators, and Microsystems (Transducers’ 13), 2013, pp. 661-664.
[25] X. Guo, Y. Yi, and S. Pourkamali, “Thermal-piezoresistive resonators and self-sustained oscillators for gas recognition and pressure sensing,” IEEE Sensors Journal, vol. 13, no. 8. pp. 2863-2872, 2013.
[26] A. Hajjam, and S. Pourkamali, “Fabrication and characterization of MEMS-based resonant organic gas sensors,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1958-1964, 2012.
[27] E. Mehdizadeh, J. C. Wilson, A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Aerosol impactor with embedded MEMS resonant mass balance for real-time particulate mass concentration monitoring,” Dig. of Tech. Papers, International Conference on Solid State Sensors, Actuators, and Microsystems (Transducers’ 13), 2013, pp. 661-664.
[28] E. Mehdizadeh, V. Kumar, S. Pourkamali, J. Gonzales, and R. Abdolvand, “A two-stage aerosol impactor with embedded MEMS resonant mass balances for particulate size segregation and mass concentration monitoring,” in IEEE Sensors, pp. 1-4, 2013
[29] A. Rahafrooz and S. Pourkamali, “Thermal actuation, a suitable mechanism for high frequency electromechanical resonators,” Proceedings, 23rd Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’10), Hong Kong, Jan. 24-28, 2010, pp. 200-203.
[30] X. Xia, P. Zhou, X. Li, “Effect of resonance-mode order on mass-sensing resolution of microcantilever sensors” in IEEE Sensors conference, pp.1958-1964, 2008.
[31] H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, I. Kirsch, E. Uhde, T. Salthammer, and E. Peiner, “Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticles mass,” Proceedings of SPIE Smart Sensors, Actuators, and MEMS V, vol. 806623, 2011.
[32] A. Hajjam, J.C. Wilson, and S. Pourkamali, “Individual air-borne particle mass measurement using high-frequency micromechanical resonators” IEEE Sensors Journal, vol. 11, issue 11, pp. 2882-2889, Apr. 2011.
[33] A. Hajjam, J.C. Wilson, A. Rahafrooz, and S. Pourkamali, “Detection and mass measurement of individual air-borne particle using high-frequency micromechanical resonators” in IEEE Sensors conference, 2010, pp. 2000-2004.
[34] T.-Y. Liu, C.-A. Sung, C.-H. Weng, C.-C. Chu, A. A. Zope, G. Pillai, and S.-S. Li, "Gated CMOS-MEMS thermal-piezoresistive oscillator-based PM2.5 sensor with enhanced particle collection efficiency,” Proceedings, Proceedings, 31st IEEE Int. Micro Electro Mechanical Systems Conf. (MEMS’18), Belfast, Northern Ireland, Jan. 21-25, 2018, pp. 75-78.
[35] C.-C. Chen, M.-H. Li, W.-C. Chen, H.-T. Yu, and S.-S. Li, “Thermally-actuated and piezoresistively-sensed CMOS-MEMS resonator array using differential-mode operation,” in IEEE International Frequency Control Symposium (IFCS), pp. 1-4, 2012.
[36] 劉廷淵,“應用於懸浮微粒感測之高傳感效率CMOS-MEMS熱致動壓阻感測振盪器設計”,國立清華大學奈米工程與微系統研究所碩士論文,中華民國106年。
[37] 朱家君,“應用於質量與懸浮微粒感測之單晶矽熱致動壓阻感測式微機械振盪器研製”,國立清華大學奈米工程與微系統研究所碩士論文,中華民國105年。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *