|
[1] R. P. Feynman, “There's plenty of room at the bottom,” Journal of Microelectromechanical Systems, vol. 1, pp. 60-66, 1992. [2] Nintendo, http://www.nintendo.com/ [3] Yole Développement, http://www.yole.fr/ [4] Texas Instruments, Inc., http://www.ti.com [5] FLIR, http://www.flir.com.hk/home/ [6] FIBARO, http://www.flh.com.tw/index.php/ [7] Melexis Microelectronic integrated systems, http:// www.melexis.com [8] Wikipedia, https://en.wikipedia.org/wiki/Infrared/ [9] A. Rogalski, "Infrared detectors: status and trends," Progress in quantum electronics, vol.27, 2003, pp. 59-210. [10] A. Daniels, "Field Guide to Infrared Systems, Detectors, and FPAs." SPIE, 2010. [11] S. A. Kuznetsov, A. G. Paulish, M. Navarro-Cia, A. V. Arzhannikov, “ Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers.” Scientific Reports, 2016. [12] S. Eminoglu, M. Y. Tanrikulu and T. Akin, “A Low-Cost 128 x 128 Uncooled Infrared Detector Array in CMOS Process,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 20-30, Feb. 2008. [13] F. Forsberg, A. Lapadatu, G. Kittilsland, S. Martinsen, N. Roxhed, A.C. Fischer, G. Stemme, B. Samel, P. Ericsson, N. Hoivik, T. Bakke, M. Bring, T. Kvisteroy, A. Ror, F. Niklaus, “CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration,” IEEE Journal of Selected Topics in Quantum Electronics, vol.21, 2700111, 2015. [14] D. Xu, B. Xiong, and Y. Wang,” Self-aligned thermoelectric infrared sensors with post-CMOS micromachining,” IEEE Electron Device Letters, vol.31, pp. 512-514, 2010. [15] D. Xu and B. Xiong and Y. Wang, “Design, fabrication and characterization of a front-etched micromachined thermopile for IR detection”, Journal of Micromechanics and Microengineering, vol. 20, no. 11, 115004, 2010 [16] A.W. Van Herwaarden, and P. M. Sarro. "Thermal sensors based on the Seebeck effect." Sensors and Actuators, vol.10, pp. 321-346, 1986. [17] M. C. Foote, "Temperature stabilization requirements for unchopped thermal detectors." AeroSense'99. International Society for Optics and Photonics, 1999. [18] H. Masaki, Y. Ohta, and Y. Fukuyama, "Low-cost thermos-electric infrared FPAs and their automotive applications." SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008. [19] Omron, http://www.omron.com/ [20] M. Muller, W. Budde, R. Gottfried, A. Hubel, R. Jahne, and H. Kuck, ”A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor,” Proc. 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, June, 1995, pp. 640-643. [21] P. M. Sarro, “Integrated silicon thermopile infrared detectors”, PhD Thesis, Delft Technical University, 1987. [22] E Socher, O Bochobza-Degani, and Y Nemirovsky,”A novel spiral CMOS compatible micromachined thermoelectric IR microsensor,” J. Micromech. Microeng., vol.11, pp. 574-576, 2001. [23] H. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, ”CMOS-based thermopiles using vertically integrated double polycrystalline silicon layers,” IEEE 26th International Conference on Micro Electro Mechanical Systems, Taipei, Taiwan, Jan., 2013, pp. 429-432. [24] J. Tanaka, M. Shiozaki, F. Aita, T. Seki, and M. Oba, ”Thermopile infrared array sensor for human detector application,” IEEE 27th International Conference on Micro Electro Mechanical Systems, San Francisco, CA,Jan., 2014, pp. 1213-1216. [25] K.C. Chang, Y. C. Lee, C. M. Sun and W. Fang, "Novel absorber membrane and thermocouple designs for CMOS-MEMS thermoelectric infrared sensor," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan, 2017, pp. 1228-1231. [26] 張凱傑, “CMOS-MEMS熱電式紅外線感測器設計與實現,” 清華大學碩士論文, 2016 [27] H. Zhou, P. Kropelnicki and C. Lee, “CMOS Compatible Midinfrared Wavelength-Selective Thermopile for High Temperature Applications,” Journal of Microelectromechanical Systems, vol. 24, no. 1, pp. 144-154, Feb. 2015. [28] M. J. Modarres-Zadeh, and R. Abdolvand,” High-responsivity thermoelectric infrared detectors with stand-alone sub-micrometer polysilicon wires,” Journal of Micromech. Microeng., vol.24, 125013, 2014. [29] C. N. Chen, “Temperature error analysis and parameter extraction of an 8–14um thermopile with a wavelength-independent absorber for tympanic thermometer,” IEEE sensors Journal, vol.11, pp. 2310-2317, 2011. [30] C. N. Chen, W. C. Huang, C. C. Chen and S. H. Shen, “A novel CMOS-compatible polysilicon/titanium thermopile,” IEEE International Conference on Nano/Molecular Medicine and Engineering, pp. 158-163, 2009. [31] D. Xu, B. Xiong, Y. Wang and T. Li, “Robust Array-Composite Micromachined Thermopile IR Detector by CMOS Technology,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1761-1763, 2011. [32] M. Ohira, Y. Koyama, F. Aita, S. Sasaki and M. Oba "Micro mirror arrays for improved sensitivity of thermopile infrared sensors," IEEE International Conference on Micro Electro Mechanical Systems, pp. 708-711, 2011. [33] J. Tanaka, H. Imamoto, T. Seki and M. Oba, "Low power wireless human detector utilizing thermopile infrared array sensor," IEEE SENSORS 2014 Proceedings, Valencia, pp. 462-465, 2014. [34] D. Xu, E. Jing, B. Xiong and Y. Wang, "Wafer-Level Vacuum Packaging of Micromachined Thermoelectric IR Sensors," IEEE Transactions on Advanced Packaging, vol. 33, no. 4, pp. 904-911, Nov. 2010. [35] D. Xu, B. Xiong and Y. Wang, "Micromachined Thermopile IR Detector Module With High Performance," IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 149-151, Feb.1, 2011. [36] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, vol.2, Weinheim, Germany, John Wiley&SonsInc, 2005. [37] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, ” Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” Int. Electron Devices Meeting, Washington, DC, Dec., 1995. [38] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors Conf., Irvine, CA, Oct., 2005, pp. 125-128. [39] M. J. de Oliveira, Equilibrium Thermodynamics. 2nd Ed., Berlin Heidelberg, Springer, 2017. [40] L. A. Klein, Millimeter Wave and Infrared Multisensor Design and Signal Processing. Artech House, Inc., 1997. [41] J. Schieferdecker, R. Quad, E. Holzenkämpfer, and M. Schulze, "Infrared thermopile sensors with high sensitivity and very low temperature coefficient." Sensors and Actuators A: Physical, vol. 47, pp. 422-427, 1995. [42] T. Geballe and G. Hull, "Seebeck effect in silicon," Physical Review, vol.98, no. 4, pp. 940-947, 1955. [43] Z. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation," Physica B, vol. 322, pp. 205-223, 2002. [44] http:// / thermoelectrics.matsci.northwestern.edu [45] H. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, ”Development of a thermopile infrared sensor using stacked double polycrystalline silicon layers based on the CMOS process,” Journal of Micromech. Microeng., vol.23, 065026, 2013. [46] C. H. Du, C. Lee, “Optimization criteria of CMOS compatible thermopile sensors,” SPIE, 3893, 0277–786. [47] 蔡明翰, “利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發,” 清華大學博士論文, 2011. [48] S. Y. Tu, W. C. Lai and W. Fang, "Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor," IEEE International Conference on Micro Electro Mechanical Systems, pp. 1048-1051, 2017. [49] V. Rajaram, Z. Qian, S. Kang, S. D. Calisgan, N. E. McGruer and M. Rinaldi, "Zero-Power Electrically Tunable Micromechanical Photoswitches," IEEE Sensors Journal, pp.1-1, 2018 [50] V. Rajaram, Z. Qian, S. Kang, N. E. McGruer and M. Rinaldi, "MEMS-based near-zero power infrared wireless sensor node," IEEE International Conference on Micro Electro Mechanical Systems, pp. 17-20, 2018 [51] S. Ogawa, D. Fujisawa, and M. Kimata, “Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths”, Optical Engineering, 54(12), 127104, 2015. [52] S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers”, Applied Physics Letters, 106, 041105, 2015. [53] G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies”, Optics express, vol.20, pp. 17503-17508, 2012. [54] Y. C. Sun, K. C. Liang, C. L. Cheng, M. Y. Lin, R. s. Chen and W. Fang, "Performance improvement of CMOS-MEMS Pirani vacuum gauge with hollow heater design," Transducers -International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1069-1072, 2015. [55] S. C. Chen, V. P. J. Chung, D. J. Yao and W. Fang, "Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application," Transducers -International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1453-1454, 2017. [56] C. M. Sun, C. Wang, M. H. Tsai, H. S. Hsieh and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” Journal of Micromech. Microeng., vol.19, 015023, 2009.
|