|
[1] H. Luo, G. K. Fedder, and L.R. Carley, “A 1 MG lateral CMOS-MEMS accelerometer.” Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 502-507. [2] O. Aydin and T. Akin, “A bulk-micromachined fully differential MEMS accelerometer with split interdigitated fingers.” IEEE Sensors Journal, vol. 13, no. 8, 2013, pp. 2914–2921. [3] S. Tez, U. Aykutlu, M. Torunbalci, and T. Akin, “A bulk-micromachined three-axis capacitive MEMS accelerometer on a single die.” Journal of Microelectromechanical Systems, vol. 24, no. 5, 2015, pp. 1264–1274. [4] T. Toshiyuki and H. Funabashi, “A Z-axis Differential capacitive SOI accelerometer with vertical comb electrodes.” Sensors and Actuators A: Physical, vol. 116, no. 3, 2004, pp. 378–383. [5] T. Yamamoto, N. Kato, M. Matsui, Y. Takeuchi, Y. Otsuka, and S. Akita, “Capacitive accelerometer with high aspect ratio single crystalline silicon microstructure using the SOI structure with polysilicon-based interconnect technique.” Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 514-519. [6] J. Xie, R. Agarwal, Y. Liu, J. M. Tsai, N. Ranganathan, and J. Singh, “Compact electrode design for in-plane accelerometer on SOI with refilled isolation trench.” 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011, pp. 76–79. [7] Y. Shoji, M. Yosida, K. Minami, and M. Esashi, “Diode integrated capacitive accelerometer with reduced structural distortion.” Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS'95, 1995, pp. 25–29. [8] A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. A. Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators.” Journal of Microelectromechanical Systems, vol. 20, no. 4, 2011, pp. 943–958. [9] Y. Terzioglu, S. E. Alper, K. Azgin, and T. Akin, “A capacitive MEMS accelerometer readout with concurrent detection and feedback using discrete components.” 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, 2014, pp. 12–15. [10] U. Sönmez, H. Külah, and T. Akin, “A ΣΔ micro accelerometer with 6 μg/√Hz resolution and 130 dB dynamic range.” Analog Integrated Circuits and Signal Processing, vol. 81, no. 2, 2014, pp. 471–485. [11] C. A. Gobet and A. Knob, “Noise analysis of switched capacitor networks.” IEEE Transactions on Circuits and Systems, vol. 30, no. 1, 1983, pp. 37–43. [12] B.V. Amini, S. Pourkamali, and F. Ayazi, “A High resolution, stictionless, CMOS compatible SOI accelerometer with a low noise, low power, 0.25 μm CMOS interface.” 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 2004, pp. 572–575. [13] P. Monajemi and F. Ayazi, “Design optimization and implementation of a microgravity capacitive HARPSS accelerometer.” IEEE Sensors Journal, vol. 6, no. 1, 2006, pp. 39–46. [14] C. K. Wang, C. S. Chen, and K. A. Wen, “A monolithic CMOS MEMS accelerometer with chopper correlated double sampling readout circuit.” 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 2023–2026. [15] D. Fang, H. Qu, and H. Xie, “A 1mW dual-chopper amplifier for a 50-μg/√Hz monolithic CMOS-MEMS capacitive accelerometer.” 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 59–60. [16] L. He, Y. P. Xu, and M. Palaniapan, “A CMOS readout circuit for silicon resonant accelerometer with 32-ppb Bias Stability.” 2007 IEEE Symposium on VLSI Circuits, 2007, pp. 1480–1490. [17] E. Alvarez, D. Avila, H. Campillo, A. Dradone, and A. Abusleme, “Noise in charge amplifiers - A gm/Id approach.” IEEE Transactions on Nuclear Science, vol. 59, no. 5, 2012, pp. 2457–2462. [18] B. V. Amini, S. Pourkamali, and F. Ayazi, “A 2.5-V 14-Bit Σ-Δ CMOS SOI capacitive accelerometer.” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, 2004, pp. 2467–2476. [19] G. Langfelder and A. Tocchio, “Differential fringe-field MEMS accelerometer.” IEEE Transactions on Electron Devices, vol. 59, no. 2, 2012, pp. 485–490. [20] H. Dong, Y. Hao, S. Shen, L. He and, J. Lei, “A novel out-of-plane MEMS tunneling accelerometer.” Sensors and Actuators A: Physical, vol. 120, no. 2, 2005, pp. 360–364. [21] B. A. Blow, R. Harjani, D. L. Polla, and T. Tamagawa, “A dual frequency range integrated circuit accelerometer using capacitive and piezoelectric sensing techniques.” 1993 IEEE International Symposium on Circuits and Systems, vol. 2, 1993, pp. 1120–1123 [22] X. Wang, J. Zhao, Y. Zhao, G. M. Xia, A. P. Qiu, Y. Su, and Y. P. Xu, “A 0.4 μg bias instability and 1.2 μg/√Hz noise floor MEMS silicon oscillating accelerometer with CMOS readout circuit.” IEEE Journal of Solid-State Circuits, vol. 52, no. 2, 2017, pp. 472–482. [23] J. Wu, G. K. Fedder, L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg /√Hz monolithic CMOS MEMS accelerometer.” IEEE Journal of Solid-State Circuits, vol. 39, no. 5, 2004, pp. 722–730. [24] T. Kajita, U. K. Moon, G. C. Temes, “A two-chip interface for a MEMS accelerometer.” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 4, 2002, pp. 853–858. [25] M. Tavakoli and R. Sarpeshkar, “An offset-canceling low-noise lock-in architecture for capacitive sensing.” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, 2003, pp. 244–253. [26] M. Tartagni and R. Guerrieri, “A fingerprint sensor based on the feedback capacitive sensing scheme.” IEEE Journal of Solid-State Circuits, vol. 33, no. 1, 1998, pp. 133–142. [27] J. M. Tsai and G. K. Fedder, “Mechanical noise-limited CMOS-MEMS accelerometers.” 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005, pp. 630–633. [28] K. Kwon and S. Park, “A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer.” Sensors and Actuators A: Physical, vol. 66, no. 1-3, 1998, pp. 250–255. [29] L. P. Wang, R. A. Wolf, Y. Wang, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers.” Journal of Microelectromechanical Systems, vol. 12, no. 4, 2003, pp. 433–439. [30] F. A. Levinzon, “Fundamental noise limit of piezoelectric accelerometer.” IEEE Sensors Journal, vol. 4, no. 1, 2004, pp. 108–111. [31] D. Goustouridis, G. Kaltsas, and A. G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation.” IEEE Sensors Journal, vol. 7, no. 7, 2007, pp. 983–989. [32] P. F. C. Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. L. Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. B. Andre, “Optical fiber accelerometer system for structural dynamic monitoring.” IEEE Sensors Journal, vol. 9, no. 11, 2009, pp. 1347–1354. [33] J. Chae, H. Kulah, and K. Najafi, “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry.” Journal of Microelectromechanical Systems, vol. 13, no. 4, 2004, pp. 628–635. [34] L. Schuchman, “Dither signals and their effect on quantization noise.” IEEE Transactions on Communications, vol. 12, no. 4, 1964, pp. 162–165. [35] ADXL1005 Datasheet and product info analog devices, https://www.analog.com/en/products/ADXL1005. [36] OPA365 2.2V, 50MHz, Low-noise, Single-supply rail-to-rail operational amplifier, TI.com, www.ti.com/product/opa365. |