帳號:guest(3.142.195.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱仕偉
作者(外文):Chiu, Shih-Wei
論文名稱(中文):應用於振動感測之SOI電容式微機電加速度計及其讀取電路設計與實現
論文名稱(外文):Design and Realization of MEMS SOI Accelerometers Interfaced with Readout Circuit for Vibration Sensing Applications
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):盧向成
李銘晃
口試委員(外文):Lu, Shiang-Cheng
Li, Ming-Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:105035504
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:電容式加速度計高頻寬加速度計電荷放大器前端電路振動感測器
外文關鍵詞:Capacitive accelerometerWide bandwidth accelerometerCharge amplifierVibration sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:523
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來隨著半導體技術的發展,處理器的運算速度有了大幅度的提升,人們對過去無法處理的龐大資訊開始有極大的興趣,任何我們生活所及事物,從健康、交通、再到購物習慣等,都可以分類成一筆筆的資料,不僅如此,在這樣的氛圍下這個概念被延伸到許多面向,工業的智慧化也因此而生,例如只要能隨時蒐集加工時的資訊,就可以掌握加工品質,而本研究將著力於應用在工具機振動感測之加速度計的設計與製作,有別於以往應用於消費電子的加速度計,工業用加速度計需要有高頻寬、高解析度的特性;在此,本研究將以SOI電容式加速度計來實現所需之規格,而電容式相較於其他形式的感測方式,具有功耗較低、對直流訊號有反應等特點。電容式加速度計的性能與其讀取電路有很大的關聯性,由於輸出運動訊號微弱,因此如何減少雜訊、增加靈敏度為設計的準則,本研究以連續時間式讀取電路得到應用於兩種不同頻率之加速度感測器,分別為共振頻5 kHz,靈敏度為245 mV/g,解析度為475.7 μg/√Hz,以及共振頻15 kHz,靈敏度為30.4 mV/g,解析度為2.06 mg/√Hz之性能表現,並完成完整的理論計算分析。
With the advancement of semiconductor technology in past decades, the computing power has been greatly improved. Therefore, the use of abundant information from our living environment becomes feasible. Anything we experience, such as health, traffic, shopping habits, etc. could be “raw data” which potentially can be transformed into “beneficial information”. Furthermore, collection and implementation of the data has been developed into different fields, such as intelligence industry. For example, if the information of machining process could be collected in timely manner, one can estimate or even enhance the machining quality. Different from commercial accelerometers, industrial grade accelerometers need to feature wide bandwidth and high resolution. In this work, an SOI capacitive accelerometer has been developed with low power consumption as well as with functionality in low frequency range. The performance of capacitive accelerometers is significantly affected by readout circuit design due to their very weak output of motion signal from MEMS transducers. As a result, how to reduce noise and increase sensitivity is of paramount importance. In this work, the self-developed accelerometer reaches resonance frequency 5 kHz, sensitivity of 245 mV/g and resolution of 475.7 μg/√Hz, while for different frequency, there is also a self-developed accelerometer with resonance frequency of 15 kHz, sensitivity of 30.4 mV/g, and resolution of 2.06 mg/√Hz. Furthermore, the system-level theoretical analysis is also been conducted.
摘要 i
目錄 iv
圖目錄 vi
表目錄 x
第一章 前言 1
1-1研究動機與背景 1
1-2文獻回顧 4
1-2-1微機電加速度計製程考量與設計 4
1-2-2電容式加速度計讀取電路 10
第二章 電容式加速度計設計 14
2-1 電容式加速度計操作原理 14
2-2 電容式加速度計設計考量 16
2-3 元件結構設計與模擬 17
第三章 電容式加速度計讀取電路設計 23
3-1 讀取電路架構 23
3-1-1連續時間式讀取電路 23
3-1-2離散時間式讀取電路 27
3-2 讀取電路設計模擬與非理想效應分析 29
第四章 電容式加速度計製程步驟與結果 35
4-1 元件之製程流程 35
4-2製程瓶頸與解決方法 40
4-2-1硬擋層之選擇 40
4-2-2蝕刻之負載效應 46
4-2-3沾黏現象 46
第五章 元件之量測與討論 50
5-1 加速度計量測 50
5-1-1量測架設 50
5-1-2 讀取電路量測結果 51
5-1-3 電容式加速度計結構電容非對稱性量測 56
5-1-4 電容式加速度計與讀取電路量測結果與分析 57
5-2 電容式加速度計系統雜訊分析 62
第六章 結論與未來工作 69
參考資料 72
[1] H. Luo, G. K. Fedder, and L.R. Carley, “A 1 MG lateral CMOS-MEMS accelerometer.” Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 502-507.
[2] O. Aydin and T. Akin, “A bulk-micromachined fully differential MEMS accelerometer with split interdigitated fingers.” IEEE Sensors Journal, vol. 13, no. 8, 2013, pp. 2914–2921.
[3] S. Tez, U. Aykutlu, M. Torunbalci, and T. Akin, “A bulk-micromachined three-axis capacitive MEMS accelerometer on a single die.” Journal of Microelectromechanical Systems, vol. 24, no. 5, 2015, pp. 1264–1274.
[4] T. Toshiyuki and H. Funabashi, “A Z-axis Differential capacitive SOI accelerometer with vertical comb electrodes.” Sensors and Actuators A: Physical, vol. 116, no. 3, 2004, pp. 378–383.
[5] T. Yamamoto, N. Kato, M. Matsui, Y. Takeuchi, Y. Otsuka, and S. Akita, “Capacitive accelerometer with high aspect ratio single crystalline silicon microstructure using the SOI structure with polysilicon-based interconnect technique.” Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 514-519.
[6] J. Xie, R. Agarwal, Y. Liu, J. M. Tsai, N. Ranganathan, and J. Singh, “Compact electrode design for in-plane accelerometer on SOI with refilled isolation trench.” 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011, pp. 76–79.
[7] Y. Shoji, M. Yosida, K. Minami, and M. Esashi, “Diode integrated capacitive accelerometer with reduced structural distortion.” Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS'95, 1995, pp. 25–29.
[8] A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. A. Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators.” Journal of Microelectromechanical Systems, vol. 20, no. 4, 2011, pp. 943–958.
[9] Y. Terzioglu, S. E. Alper, K. Azgin, and T. Akin, “A capacitive MEMS accelerometer readout with concurrent detection and feedback using discrete components.” 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, 2014, pp. 12–15.
[10] U. Sönmez, H. Külah, and T. Akin, “A ΣΔ micro accelerometer with 6 μg/√Hz resolution and 130 dB dynamic range.” Analog Integrated Circuits and Signal Processing, vol. 81, no. 2, 2014, pp. 471–485.
[11] C. A. Gobet and A. Knob, “Noise analysis of switched capacitor networks.” IEEE Transactions on Circuits and Systems, vol. 30, no. 1, 1983, pp. 37–43.
[12] B.V. Amini, S. Pourkamali, and F. Ayazi, “A High resolution, stictionless, CMOS compatible SOI accelerometer with a low noise, low power, 0.25 μm CMOS interface.” 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 2004, pp. 572–575.
[13] P. Monajemi and F. Ayazi, “Design optimization and implementation of a microgravity capacitive HARPSS accelerometer.” IEEE Sensors Journal, vol. 6, no. 1, 2006, pp. 39–46.
[14] C. K. Wang, C. S. Chen, and K. A. Wen, “A monolithic CMOS MEMS accelerometer with chopper correlated double sampling readout circuit.” 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 2023–2026.
[15] D. Fang, H. Qu, and H. Xie, “A 1mW dual-chopper amplifier for a 50-μg/√Hz monolithic CMOS-MEMS capacitive accelerometer.” 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 59–60.
[16] L. He, Y. P. Xu, and M. Palaniapan, “A CMOS readout circuit for silicon resonant accelerometer with 32-ppb Bias Stability.” 2007 IEEE Symposium on VLSI Circuits, 2007, pp. 1480–1490.
[17] E. Alvarez, D. Avila, H. Campillo, A. Dradone, and A. Abusleme, “Noise in charge amplifiers - A gm/Id approach.” IEEE Transactions on Nuclear Science, vol. 59, no. 5, 2012, pp. 2457–2462.
[18] B. V. Amini, S. Pourkamali, and F. Ayazi, “A 2.5-V 14-Bit Σ-Δ CMOS SOI capacitive accelerometer.” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, 2004, pp. 2467–2476.
[19] G. Langfelder and A. Tocchio, “Differential fringe-field MEMS accelerometer.” IEEE Transactions on Electron Devices, vol. 59, no. 2, 2012, pp. 485–490.
[20] H. Dong, Y. Hao, S. Shen, L. He and, J. Lei, “A novel out-of-plane MEMS tunneling accelerometer.” Sensors and Actuators A: Physical, vol. 120, no. 2, 2005, pp. 360–364.
[21] B. A. Blow, R. Harjani, D. L. Polla, and T. Tamagawa, “A dual frequency range integrated circuit accelerometer using capacitive and piezoelectric sensing techniques.” 1993 IEEE International Symposium on Circuits and Systems, vol. 2, 1993, pp. 1120–1123
[22] X. Wang, J. Zhao, Y. Zhao, G. M. Xia, A. P. Qiu, Y. Su, and Y. P. Xu, “A 0.4 μg bias instability and 1.2 μg/√Hz noise floor MEMS silicon oscillating accelerometer with CMOS readout circuit.” IEEE Journal of Solid-State Circuits, vol. 52, no. 2, 2017, pp. 472–482.
[23] J. Wu, G. K. Fedder, L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg /√Hz monolithic CMOS MEMS accelerometer.” IEEE Journal of Solid-State Circuits, vol. 39, no. 5, 2004, pp. 722–730.
[24] T. Kajita, U. K. Moon, G. C. Temes, “A two-chip interface for a MEMS accelerometer.” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 4, 2002, pp. 853–858.
[25] M. Tavakoli and R. Sarpeshkar, “An offset-canceling low-noise lock-in architecture for capacitive sensing.” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, 2003, pp. 244–253.
[26] M. Tartagni and R. Guerrieri, “A fingerprint sensor based on the feedback capacitive sensing scheme.” IEEE Journal of Solid-State Circuits, vol. 33, no. 1, 1998, pp. 133–142.
[27] J. M. Tsai and G. K. Fedder, “Mechanical noise-limited CMOS-MEMS accelerometers.” 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005, pp. 630–633.
[28] K. Kwon and S. Park, “A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer.” Sensors and Actuators A: Physical, vol. 66, no. 1-3, 1998, pp. 250–255.
[29] L. P. Wang, R. A. Wolf, Y. Wang, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers.” Journal of Microelectromechanical Systems, vol. 12, no. 4, 2003, pp. 433–439.
[30] F. A. Levinzon, “Fundamental noise limit of piezoelectric accelerometer.” IEEE Sensors Journal, vol. 4, no. 1, 2004, pp. 108–111.
[31] D. Goustouridis, G. Kaltsas, and A. G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation.” IEEE Sensors Journal, vol. 7, no. 7, 2007, pp. 983–989.
[32] P. F. C. Antunes, H. F. T. Lima, N. J. Alberto, H. Rodrigues, P. M. F. Pinto, J. L. Pinto, R. N. Nogueira, H. Varum, A. G. Costa, and P. S. B. Andre, “Optical fiber accelerometer system for structural dynamic monitoring.” IEEE Sensors Journal, vol. 9, no. 11, 2009, pp. 1347–1354.
[33] J. Chae, H. Kulah, and K. Najafi, “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry.” Journal of Microelectromechanical Systems, vol. 13, no. 4, 2004, pp. 628–635.
[34] L. Schuchman, “Dither signals and their effect on quantization noise.” IEEE Transactions on Communications, vol. 12, no. 4, 1964, pp. 162–165.
[35] ADXL1005 Datasheet and product info analog devices, https://www.analog.com/en/products/ADXL1005.
[36] OPA365 2.2V, 50MHz, Low-noise, Single-supply rail-to-rail operational amplifier, TI.com, www.ti.com/product/opa365.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *