帳號:guest(3.149.238.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝尚穎
作者(外文):Hsieh, Shang-Ying
論文名稱(中文):以沉浸式虛擬實境模擬人機協作之可行性評估:以遞交作業為例
論文名稱(外文):Feasibility Evaluation of Using Immersive Virtual Reality to Simulate Human-Machine Collaboration: A Case Study of Hand-over Tasks
指導教授(中文):盧俊銘
指導教授(外文):Lu, Jun-Ming
口試委員(中文):孫天龍
黃瀅瑛
口試委員(外文):Sun, Tien-Lung
Huang, Ying-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034563
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:129
中文關鍵詞:人機協作虛擬實境遞交作業動作策略臨場感
外文關鍵詞:human-machine collaborationvirtual realityhandover taskmotion strategysense of presence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:328
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近十年來,協作型機器人(collaborative robot)挾著低成本、輕量化以及高彈性等優勢,逐漸地在中小企業間受到矚目,對規模不大的產線來說,人機協作提高了產線變更的彈性以及舒緩土地和生產成本。由於協作型機器人的實務導入仍在成長階段且須直接與作業員接觸,上線前的評估¬¬-包含與作業員的互動方式和安全議題-也就更為重要。針對產前評估,虛擬製造(virtual manufacturing)為一項整合製程資訊來模擬真實生產的手法,但由於過去多著重於製程、動線等規畫,未將機器人與人員的互動列入考量,因此本研究欲探討能否透過虛擬實境技術來模擬人機協作的互動,以達成上線前的虛擬評估。
本研究招募30名研究參與者,考量可用設備資源的限制,使用綠野仙蹤法(Wizard of Oz Test),由實驗人員在後端操作多關節量測手臂FARO Arm,使參與者在「自認正和自動化機器人互動」的情形下共同進行遞交作業。除了上述的實體互動外,也使用HTC Vive搭配Unity 3D建置與真實場景相同的虛擬環境,讓參與者在沉浸式虛擬環境中與虛擬機器人進行協同作業,並另外針對與虛擬物體的接觸增加聽覺回饋、視覺回饋、聽覺和視覺回饋並存以及觸覺回饋等四種情境,加上接觸時無額外感官回饋的虛擬場景以及實體互動,共有六種情境相互比較。
本研究依體驗者在虛擬環境中自覺是否真實的訊息處理流程,探討認知層面之差異,再比較情境間是否有動作反應的不同,進而影響任務績效。首先透過臨場感問卷和模擬器動暈症問卷探討參與者在不同情境下是否有認知層面的差異,並蒐集研究參與者肩、肘、腕等關節座標與角度後,利用關鍵影格的篩選和主成分分析降低資料維度,再使用集群分析找出與機器人協同遞交的動作策略來探討情境間的動作差異;最後透過量測任務完成時間與正確率,來探討認知與行為的差異是否反映於任務績效。
研究結果顯示,雖然在虛擬場景下參與者具備相當的臨場感,也認為自身在當下是和機器人進行協同作業,但動作策略仍與真實環境相異。此外,提供觸覺回饋的作業模式不只對於臨場感的提升較有助益,還能讓任務績效接近真實環境的表現。基於以上成果,本研究建立一套以虛擬實境技術模擬人機協作的系統與方法,進而提供發展人機協作評估的替代方法之參考;然而,若欲開發人機協作的沉浸式虛擬訓練系統,本研究建議除了考量臨場感外,還要確保虛擬環境下的動作能夠與真實環境一致,方能使虛擬實境模擬的效果貼近實體作業。
Over the past decade, collaborative robots that allow concurrent work with operators in a shared workspace have been gradually adopted in production lines, especially among medium-sized companies. It brings about higher flexibility and lower cost than traditional industrial robots. However, the direct interaction with human operators also raises more concerns of safety issues. So, the evaluation prior to the introduction is considerably important. Virtual manufacturing, a technique applied to production development through virtual simulation, is a common method to evaluate equipment and layout. Nevertheless, the interaction between human operators and robots had not been discussed much in related studies. Hence, the feasibility of simulating human-machine collaboration via virtual reality techniques will be investigated in this study.
30 participants were recruited to collaborate on a hand-over task with a collaborative robot in real and virtual environments. Considering the restriction of experimental environment, the Wizard of Oz experiment method was taken in the real environment condition. A FARO Arm controlled by the test giver was used to pretend that a collaborative robot was interacting with the participant automatically. Besides, a virtual experiment scene was built by using Unity. Participants wore a head mounted display (HTC Vive) and interacted with the Immersive Virtual Environment (IVE). There are six scenarios included in the experiment: real environment, IVE, IVE with haptic feedback for contacts, IVE with auditory feedback for contacts, IVE with visual feedback for contacts, and IVE with both auditory and visual feedback for contacts. It was aimed at not only investigating the difference between real and virtual environments in human-machine collaboration, but finding a more suitable method for such virtual simulations.
The process of information processing that users in virtual reality perceive the reality of environment was taken reference in this study. The difference of cognition among scenarios was discussed in the beginning, and then changes of motions among scenarios and task performance were measured and analysised. At first, presence questionnaire and simulator sickness questionnaire were used to compare the cognition among scenarios. Then, the joint coordinates and angles of shoulders, elbows and wrists were captured by a motion capture system. Considering the dimension of dataset, several key frames that best represent consecutive motions were selected to conduct Principal Component Analysis (PCA). The results of PCA were inputed to conduct cluster analysis to identify different motion strategies performed by participants. At last, task completion time and correct rate were measured to investigate if the difference of cognition and behavior influence participants’ performance.
According to the results of questionnaires, participants consider themselves collaborating with a automated robot and perform high sense of presence. Nevertheless, differences of motion strategies between real and virtual environments were found in collaborative operations. Besides, participants in IVE with haptic feedback perform better sense of presence and similar task performane with real environment. Based on the results, an immersive virtual simulation system was built to evaluate human-machine collaboration, as well as providing recommendations for reference. The findings form this study suggest that not only sense of prence in virtual environment but also the consistence of motions between real and virtual environment should be considered to make the simulatiom more realistic when developing an immersive virtual training system for human-machine collaboration.
摘要
目錄
圖目錄 vii
表目錄 ix
第一章 緒論 1
  1.1 研究背景與動機 1
  1.2 研究目的與範圍 3
  1.3 研究架構與流程 4
第二章 文獻回顧 8
  2.1 人機協作 8
    2.1.1人機協作的定義與發展 8
    2.1.2人機協作的安全議題 10
    2.1.3人機協作應用領域與評估 13
  2.2 虛擬實境的模擬與評估 15
    2.2.1 虛擬實境 15
    2.2.2 虛擬實境於產線評估之應用:虛擬製造 16
    2.2.3 虛擬實境於人機協作之應用 17
  2.3 臨場感 18
    2.3.1 臨場感的影響因素 18
    2.3.2 臨場感評估方法 20
  2.4 動作策略分析 22
    2.4.1 資料蒐集 22
    2.4.2 資料分析 23
  2.5 小結 24
第三章 研究方法 26
  3.1 研究規畫與準備 26
    3.1.1 研究參與者 26
    3.1.2 實驗儀器與設備 26
    3.1.3 實驗場景 29
    3.1.4 作業內容 31
  3.2 實驗因子 35
    3.2.1 自變數 35
    3.2.2 依變數 39
  3.3 實驗流程 45
  3.4 資料分析 48
    3.4.1 動作策略分析 48
    3.4.2 問卷分析 52
    3.4.3 任務績效 53
第四章 研究結果 54
  4.1 前置作業 54
    4.1.1 在真實場景對於機器人的相信程度 54
    4.1.2 因模擬器動暈症造成的不舒適度 55
    4.1.3 臨場感問卷構面之驗證與定義 64
  4.2 主動作業模式 68
    4.2.1主動模式下的自覺臨場感和相似度 68
    4.2.2 主動模式下動作策略 74
    4.2.3 主動模式下的任務績效 86
  4.3 被動作業模式 88
    4.3.1 被動模式下的自覺臨場感與相似度 88
    4.3.2 被動模式下的動作策略 93
    4.3.3 被動模式下任務績效 102
  4.4 小結 104
第五章 討論 105
  5.1 虛擬情境下感官回饋對於臨場感之影響 105
  5.2 不同動作策略間的異同 108
  5.3 任務績效 112
第六章 結論 113
  6.1 主要發現 113
  6.2 研究貢獻與應用 114
  6.3 研究限制與未來方向 115
參考文獻 118
附錄一:臨場感問卷 127
附錄二:模擬器動暈症問卷 128
附錄三:研究倫理審查核可證明 129
中文部分:
1. 104人力銀行(2016)。104職務大百科。取自https://www.104.com.tw/jb/jobwiki/jobCatMaster/stage/2010001002/4。
2. 李佩蓉(2010)。消費者在虛擬實境中的臨場感體驗與沉浸傾向之研究: 以商業動感模擬遊戲機為例。國立交通大學經營管理研究所碩士論文。
3. 何嘉芬(2017)。人機協作環境中遞交作業等候時間之評估。逢甲大學工業工程與系統管理學系碩士論文。
4. 單萱(2017)。人與機器人組裝協作環境下遞交空間位置及機器人路徑對遞交作業績效之影響。逢甲大學工業工程與系統管理學系碩士論文。

英文部分:
1. Abdi, H., & Williams, L.J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
2. ABI Research. (2015). Collaborative Robotics: Market Opportunities. Retrieved from https://www.abiresearch.com/webinars/collaborative-robotics-market-opportunities/
3. Access Physiotherapy. (n.d.). CHAPTER 18: The Forearm, Wrist, and Hand. Retrieved June 29, 2018 from https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=1821§ionid=128589424
4. Allen, B., Curless, B., & Popović, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. Paper presented at the ACM transactions on graphics (TOG), New York, USA.
5. ATONAMY QA. (n.d.). Retrieved June 29, 2018, from http://www.anatomyqa.com/anatomy/upperlimb/radioulnar-joints-supination-and-pronation/
6. Ben Azouz, Z., Rioux, M., Shu, C., & Lepage, R. (2004). Analysis of human shape variation using volumetric techniques. Paper presented at the Proc. International Conference on Computer Animation and Social Agents, Geneva, Switzerland
7. Bélanger-Barrette, M. (2017). 3 Best Collaborative Robot Applications. Retrieved from https://blog.robotiq.com/3-best-collaborative-robots-applications
8. Barfield, W., Zeltzer, D., Sheridan, T., & Slater, M. (1995). Presence and performance within virtual environments. Virtual environments and advanced interface design, 473-513.
9. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., & Cruz-Neira, C. (2001). VR Juggler: A virtual platform for virtual reality application development. Paper presented at the Virtual Reality, 2001. Proceedings. IEEE, Yokohama, Japan.
10. Cakmak, M., Srinivasa, S.S., Lee, M.K., Forlizzi, J., & Kiesler, S. (2011, September). Human preferences for robot-human hand-over configurations. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 1986-1993). IEEE.
11. Cassidy, M. (2017). Centaur Chess Shows Power of Teaming Human and Machine. Retrieved from https://www.huffingtonpost.com/mike-cassidy/centaur-chess-shows-power_b_6383606.html
12. Choi, S., Jung, K., & Noh, S.D. (2015). Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering, 23(1), 40-63.
13. Civil, I.D., & Schwab, C.W. (1988). The Abbreviated Injury Scale, 1985 revision: a condensed chart for clinical use. Journal of Trauma and Acute Care Surgery, 28(1), 87-90.
14. Cliff, N. (1987). Analyzing multivariate data: Harcourt Brace Jovanovich.
15. Colgate, J.E., Edward, J., Peshkin, M.A., & Wannasuphoprasit, W. (1996). Cobots: Robots for collaboration with human operators.
16. Colgate, J.E., Peshkin, M., & Klostermeyer, S.H. (2003). Intelligent assist devices in industrial applications: a review. Paper presented at the Intelligent Robots and Systems, 2003.(IROS 2003), Los Angeles, USA.
17. Craftbrewswag.info. (2016). Human Skeleton Male. Retrieved from http://craftbrewswag.info/human-skeleton-male/
18. Cruz-Neira, C., Sandin, D.J., & DeFanti, T.A. (1993). Surround-screen projection-based virtual reality: the design and implementation of the CAVE. Paper presented at the Proceedings of the 20th annual conference on Computer graphics and interactive techniques, New York, USA.
19. De Sa, A.G., & Zachmann, G. (1999). Virtual reality as a tool for verification of assembly and maintenance processes. Computers & graphics, 23(3), 389-403.
20. Deluzio, K., & Astephen, J. (2007). Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait & posture, 25(1), 86-93.
21. Dillon, C., Keogh, E., Freeman, J., & Davidoff, J. (2000). Aroused and immersed: the psychophysiology of presence. Paper presented at the Proceedings of 3rd International Workshop on Presence, Delft University of Technology, Delft, The Netherlands.
22. Ebrahimi, E., Babu, S.V., Pagano, C.C., & Jörg, S. (2016). An empirical evaluation of visuo-haptic feedback on physical reaching behaviors during 3D interaction in real and immersive virtual environments. ACM Transactions on Applied Perception (TAP), 13(4), 19.
23. Electronic Products. (2017). What’s inside: HTC Vive. Retrieved from https://www.electronicproducts.com/Multimedia/Video/What_s_inside_HTC_Vive.aspx
24. Endo, Y., Tada, M., & Mochimaru, M. (2014). Dhaiba: development of virtual ergonomic assessment system with human models. In Proceedings of The 3rd International Digital Human Symposium.
25. Franklin, C. (2017). Take a safe approach to collaborative robots. Retrieved from https://www.isa.org/intech/20170803/
26. Freeman, J., Avons, S.E., Meddis, R., Pearson, D.E., & IJsselsteijn, W. (2000). Using behavioral realism to estimate presence: A study of the utility of postural responses to motion stimuli. Presence: Teleoperators and Virtual Environments, 9(2), 149-164.
27. García, A.A., Bobadilla, I.G., Figueroa, G.A., Ramírez, M.P., & Román, J.M. (2016). Virtual reality training system for maintenance and operation of high-voltage overhead power lines. Virtual Reality, 20(1), 27-40.
28. Gibson, J.J. (2014). The ecological approach to visual perception: classic edition: Psychology Press.
29. Gilbreth, F.B., & Kent, R.T. (1911). Motion study: Constable London.
30. Gower, J.C. (1967). A comparison of some methods of cluster analysis. Biometrics, 623-637.
31. Greene, M. (2017). Collaborative Robots Part 1: Pros, Cons, and Applications. Retrieved from https://www.bastiansolutions.com/blog/index.php/2017/11/14/collaborative-robots-part-1-pros-cons-applications/
32. Greenfield, D. (2017). Choosing Between Cobots and Industrial Robots. Retrieved from https://www.automationworld.com/choosing-between-cobots-and-industrial-robots
33. Greunke, L., & Sadagic, A. (2016). Taking Immersive VR Leap in Training of Landing Signal Officers. IEEE transactions on visualization and computer graphics, 22(4), 1482-1491.
34. Haddadin, S., Albu-Schäffer, A., & Hirzinger, G. (2010). Soft-tissue injury in robotics. Paper presented at the Robotics and Automation (ICRA), 2010 IEEE International Conference on Anchorage, USA.
35. Hanington, B., & Martin, B. (2012). Universal methods of design: 100 ways to research complex problems, develop innovative ideas, and design effective solutions: Rockport Publishers.
36. HEALTH JADE. (n.d.). Pronation and supination. Retrieved June 29, 2018 from https://healthjade.com/pronation-and-supination/
37. Hendrix, C., & Barfield, W. (1996). The sense of presence within auditory virtual environments. Presence: Teleoperators & Virtual Environments, 5(3), 290-301.
38. Hirai, N., & Mizoguchi, H. (2003). Visual tracking of human back and shoulder for person following robot. Paper presented at the Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on Kobe, Japan
39. Huber, M., Rickert, M., Knoll, A., Brandt, T., & Glasauer, S. (2008). Human-robot interaction in handing-over tasks. Paper presented at the Robot and Human Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on Munich, Germany.
40. International Organization for Standardization. (2010). ISO 13855: 2010: Safety of machinery: Positioning of safeguards with respect to the approach speeds of parts of the human body. Geneva, Switzerland: International Organization for Standardization.
41. International Organization for Standardization. (2011). ISO 10218-2: 2011: Robots and robotic devices–Safety requirements for industrial robots–Part 2: Robot systems and integration. Geneva, Switzerland: International Organization for Standardization.
42. International Organization for Standardization. (2011). ISO 10218-1: 2011: Robots and robotic devices–Safety requirements for industrial robots–Part 1: Robots. Geneva, Switzerland: International Organization for Standardization.
43. International Organization for Standardization. (2016). ISO TS 15066-Robots and robotic devices-Collaborative robots.
44. Jones, R., & Dawson, S. (1986). Strategies for ensuring safety with industrial robot systems. Omega, 14(4), 287-297.
45. Kühnapfel, U., Cakmak, H.K., & Maaß, H. (2000). Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & graphics, 24(5), 671-682.
46. Kaiser, H.F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.
47. Kennedy, R.S., Lane, N.E., Berbaum, K.S., & Lilienthal, M.G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), 203-220.
48. Krueger, J. (2014). Human-Machine Collaboration. In CIRP Encyclopedia of Production Engineering (pp. 668-671). Springer Berlin Heidelberg.
49. Knight, W. (2014). How Human-Robot Teamwork Will Upend Manufacturing. Retrieved from https://www.technologyreview.com/s/530696/how-human-robot-teamwork-will-upend-manufacturing/
50. Kozak, J., Hancock, P., Arthur, E., & Chrysler, S. (1993). Transfer of training from virtual reality. Ergonomics, 36(7), 777-784.
51. Lance, G.N., & Williams, W.T. (1967). A general theory of classificatory sorting strategies: II. Clustering systems. The computer journal, 10(3), 271-277.
52. Leavitt, C., Greenwald, A.G., & Obermiller, C. (1981). What is low involvement low in? ACR North American Advances.
53. Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
54. Lin, E., Minis, I., Nau, D.S., & Regli, W.C. (1995). Contribution to virtual manufacturing background research. Institute for Systems Research, University of Maryland.
55. MacQueen, J.B. (1967). Some Methods for Classification and Analysis of MultiVariate Observations. In L. M. L. Cam & J. Neyman (eds.), Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability (p./pp. 281-297), : University of California Press.
56. Matthias, B., Oberer-Treitz, S., Staab, H., Schuller, E., & Peldschus, S. (2010). Injury risk quantification for industrial robots in collaborative operation with humans. Paper presented at the Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), Munich, Germany.
57. Michalos, G., Makris, S., Spiliotopoulos, J., Misios, I., Tsarouchi, P., & Chryssolouris, G. (2014). ROBO-PARTNER: Seamless Human-Robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Procedia CIRP, 23, 71-76.
58. Mujber, T.S., Szecsi, T., & Hashmi, M.S. (2004). Virtual reality applications in manufacturing process simulation. Journal of materials processing technology, 155, 1834-1838.
59. Norberto Pires, J., Ramming, J., Rauch, S., & Araújo, R. (2002). Force/torque sensing applied to industrial robotic deburring. Sensor Review, 22(3), 232-241.
60. Nordgren, W.B. (2003). Flexible simulation (Flexsim) software: Flexsim simulation envir-onment. Paper presented at the Proceedings of the 35th conference on Winter simulation: driving innovation, New Orleans, USA
61. Oberer, S., & Schraft, R.D. (2007). Robot-dummy crash tests for robot safety assessment. Paper presented at the Robotics and Automation, 2007 IEEE International Conference on Roma, Italy.
62. Pappas, M., Karabatsou, V., Mavrikios, D., & Chryssolouris, G. (2006). Development of a web-based collaboration platform for manufacturing product and process design evaluation using virtual reality techniques. International Journal of Computer Integrated Manufacturing, 19(8), 805-814.
63. Parsons, H.M. (1986). Human factors in industrial robot safety. Journal of occupational accidents, 8(1-2), 25-47.
64. Pearson, K. (1901). Principal components analysis. The London, Edinburgh and Dublin Philosophical Magazine and Journal, 6(2), 566.
65. Peshkin, M.A., Colgate, J.E., Wannasuphoprasit, W., Moore, C.A., Gillespie, R.B., & Akella, P. (2001). Cobot architecture. IEEE Transactions on Robotics and Automation, 17(4), 377-390.
66. Pittman, K. (2016). INFOGRAPHIC: A Brief History of Collaborative Robots. Retrieved from https://www.engineering.com/AdvancedManufacturing/ArticleID/12169/INFOGRAPHIC-A-Brief-History-of-Collaborative-Robots.aspx
67. Reid, S.M., Graham, R.B., & Costigan, P.A. (2010). Differentiation of young and older adult stair climbing gait using principal component analysis. Gait & posture, 31(2), 197-203.
68. Robotic Industries Association. (2012). ANSI/RIA R15. 06: 2012 Safety Requirements for industrial robots and robot systems. Ann Arbor: Robotic Industries Association.
69. Robotic Industries Association. (2002). T15. 1 Draft Standard for Trial Use for Intelligent Assist Devices—Personnel Safety Requirements. Ann Arbor, MI: RIA.
70. Sadler, EM., Graham, R.B., & Stevenson, J.M. (2013). Gender difference and lifting technique under light load conditions: a principal component analysis. Theoretical Issues in Ergonomics Science, 14(2), 159-174.
71. Sallnäs, E.-L., Rassmus-Gröhn, K., & Sjöström, C. (2000). Supporting presence in collaborative environments by haptic force feedback. ACM Transactions on Computer-Human Interaction (TOCHI), 7(4), 461-476.
72. Sheridan, T.B. (1992). Musings on telepresence and virtual presence. Presence: Teleoperators & Virtual Environments, 1(1), 120-126.
73. Shukla, C., Vazquez, M., & Chen, F.F. (1996). Virtual manufacturing: an overview. Computers & Industrial Engineering, 31(1), 79-82.
74. Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560-565.
75. Slater, M., Linakis, V., Usoh, M., Kooper, R., & Street, G. (1996). Immersion, presence, and performance in virtual environments: An experiment with tri-dimensional chess. Paper presented at the ACM virtual reality software and technology (VRST), New York, USA.
76. Slater, M., Usoh, M., & Steed, A. (1995). Taking steps: the influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction (TOCHI), 2(3), 201-219.
77. Sokal, R.R. (1958). A statistical method for evaluating systematic relationship. University of Kansas science bulletin, 28, 1409-1438.
78. Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of communication, 42(4), 73-93.
79. Subhash, S. (1996). Applied multivariate techniques. John Wily & Sons Inc., Canada.
80. Tomita, C. (2017). 5 robotic essentials for small and mid-sized manufacturers. Retrieved from https://mep.utah.edu/2017/08/24/5-robotic-essentials-for-small-and-mid-sized-manufacturers/
81. van Baren, J., & IJsselsteijn, W. (2004). Measuring presence: A guide to current measurement approaches. Deliverable of the OmniPres project IST-2001-39237.
82. Ward Jr, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
83. Welch, R.B., Blackmon, T.T., Liu, A., Mellers, B.A., & Stark, L.W. (1996). The effects of pictorial realism, delay of visual feedback, and observer interactivity on the subjective sense of presence. Presence: Teleoperators & Virtual Environments, 5(3), 263-273.
84. Witmer, B.G., Jerome, C.J., & Singer, M.J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators and Virtual Environments, 14(3), 298-312.
85. Witmer, B.G., & Singer, M.J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240.
86. Youngblut, C., & Huie, O. (2003). The relationship between presence and performance in virtual environments: Results of a VERTS study. Paper presented at the Virtual Reality, 2003. Proceedings. IEEE, Los Angeles, USA
87. Youngblut, C., & Perrin, B. (2002). Investigating the relationship between presence and performance in virtual environments. IMAGE.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *