帳號:guest(3.141.201.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖阡蓉
作者(外文):Liao, Chien-Jung
論文名稱(中文):基於擴增實境之枓栱輔助組裝系統
論文名稱(外文):Augmented Reality Assisted Assembly of Tou-Kung
指導教授(中文):瞿志行
指導教授(外文):Chu, Chih-Hsing
口試委員(中文):陳姿汝
黃瀅瑛
口試委員(外文):Chen, Zi-Ru
Huang, Ying Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034562
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:擴增實境枓栱組裝圖像辨識人因評估
外文關鍵詞:Augmented realityTou-Kungassemblyhuman computer interactionergonomic assessment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:484
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
枓栱為代表東方之建築特色,其構造工法高度複雜,難以僅由古書的圖面學習理解,為保留與推廣此項文化工藝,已開發出枓栱的縮小實體模型,透過動手組裝學習其構造。本研究以此為標的物,發展基於擴增實境之輔助組裝系統,探討不同的內容呈現設計,如何影響輔助組裝的效能。先經由傳統媒材了解建築模型與組裝限制,作為以數位內容傳遞枓栱知識的設計參考,解決圖面說明與實體操作產生的認知落差。以斗栱的花紋設計作為辨識特徵,發展數種不同的擴增實境呈現方式,以及對應的輔助組裝的互動功能。並進行人因評估實驗,根據定性與量化分析,探討對於組裝成效的影響差異。實驗結果顯示,使用擴增實境輔助功能可顯著降低使用者拿取錯誤零件次數,提升對零件大小的認知,而較長的辨識時間則造成不佳的體驗。驗證利用擴增實境輔助組裝時,相較於傳統的紙本說明,具有使用性的優勢,若能改善物件辨識的速度,或可改善組裝的效率。
“Tou-Kung” represents the architectural characteristics of the East, and its construction method is highly complex. To learn its assembly from the drawings showing in ancient books is difficult. In order to preserve and promote these cultural relics, miniaturized physical models of Tou-Kung have been developed. People can learn its structure and appreciate its complexity through model assembly. This research employs Tou-Kung as a target to develop an augmented reality (AR) based assembly assisted system. Our goal is to explore how different instruction designs influence the effectiveness of the assembly process. A pilot study was conducted to understand the difficulties of architectural model assembly. These constraints serve as design references for constructing the system that aims to solve the cognitive gap between 2-dimentional graphical sketches and 3-dimentional physical models. The study uses texture patterns of individual components as the feature information in automatic object recognition. Assessment experiments were conducted to understand the influence of different assisted functions based on the assembly process from both qualitative and quantitative analysis. The results have shown that the number of operation errors decreases. However, the recognition time in the AR assisted functions increases the assembly process and have a negative effect on the user experience. The experimental findings provide practice design guidelines for the design of AR assisted assembly systems.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 擴增實境輔助組裝 4
2.1.1 系統發展 4
2.1.2 介面設計與系統回饋 4
2.2 擴增實境系統評估方式 6
2.3 小結 7
第三章 研究方法 9
3.1 研究架構 9
3.2 研究方法 10
3.3 研究限制 11
第四章 前測與分析 13
4.1 前測實驗設計 13
4.1.1 實驗前置作業 13
4.1.2 實驗流程 15
4.2 實驗分析 15
4.3 前測實驗小結 17
第五章 系統建構與實驗設計 18
5.1 組裝輔助系統建構 18
5.1.1 組裝輔助系統功能設計 18
5.1.2 組裝輔助系統建置 20
5.1.3 辨識圖樣設計 22
5.1.4 組裝輔助系統流程設計 24
5.2 組裝輔助系統實驗設計 31
5.2.1 研究參與者 31
5.2.2 實驗環境設置 31
5.2.3 實驗流程 31
5.2.4 評估與測量方式 34
第六章 研究結果與討論 35
6.1 輔助系統之組裝時間分析 35
6.1.1 實驗假設 35
6.1.2 平均組裝時間單因子變數分析 36
6.1.3 個別步驟時間單因子變異數分析 38
6.1.4 組裝時間分析小結 41
6.2 錯誤次數分析 42
6.2.1 實驗假設 42
6.2.2 不同組裝輔助系統平均錯誤次數單因子變異數分析 44
6.2.3 錯誤分類單因子變異數分析 45
6.2.4 錯誤糾正方式單因子變異數分析 48
6.2.5 錯誤次數分析小結 50
6.3 NASA-TLX平均分數分析 51
6.3.1 不同輔助組裝系統間NASA-TLX平均分數單因子變異數分析 51
6.3.2 小結 52
6.4 討論 53
6.4.1 假設結果與分析 53
6.4.2 組裝實驗觀察紀錄 54
6.4.3 與文獻之比較 55
6.5 實驗結果與分析小結 58
第七章 結論與未來發展 59
7.1 結論 59
7.2 未來發展 60
附錄一 NASA-tlx 問卷設計 66
附錄二 枓栱花紋設計 68
[1] Ulrich K.T. & Eppinger, S.D. (2004) Product Design & Development, McGraw Hill, 4th Edition.
[2] Google glass: https://x.company/glass/
[3] Tangle: https://developers.google.com/tango/
[4] AR Core: https://developers.google.com/ar/
[5] “Google says augmented reality will be on 'hundreds of millions' of Android devices next year,” https://www.cnbc.com/2017/11/07/google-augmented-reality-will-be-on-hundreds-of-millions-of-android-devices.html
[6] Ong, S. K., Yuan, M. L., & Nee, A. Y. C. (2008). Augmented reality applications in manufacturing: a survey. International journal of production research (pp. 2707-2742).
[7] 維基百科:https://zh.wikipedia.org/wiki/%E6%96%97%E6%A0%B1
[8] 梁思成,大拙至美:梁思成最美的建築文字,三聯出版社,2012。
[9] 枓栱生成系統:http://www.cc.ntut.edu.tw/~tjhsieh/w/ShapeGrammarDougong/
[10] Radkowski, R. (2016). Object tracking with a range camera for augmented reality assembly assistance. Journal of Computing and Information Science in Engineering (pp. 1-8).
[11] Caudell, T. P. & Mizell, D. W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes. In System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International Conference (pp. 659-669).
[12] Korn, O., Schmidt, A., & Hörz, T. (2013). Augmented manufacturing: a study with impaired persons on assistive systems using in-situ projection. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments (p. 21).
[13] Hou, L. & Wang, X. (2013). A study on the benefits of augmented reality in retaining working memory in assembly tasks: A focus on differences in gender. Automation in Construction (p. 32, pp. 38–45).
[14] Renner, P. & Pfeiffer, T. (2017). Evaluation of Attention Guiding Techniques for Augmented Reality-based Assistance in Picking and Assembly Tasks. In Proceedings of the 22nd International Conference on Intelligent User Interfaces Companion (pp. 89-92).
[15] Hahn, J., Ludwig, B., & Wolff, C. (2015). Augmented reality-based training of the PCB assembly process. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia (pp. 395-399).
[16] Woodward, C., Hakkarainen, M., & Billinghurst, M. (2012). A Client/Server Architecture for Augmented Assembly on Mobile Phones. In Handbook of Research on Mobile Software Engineering: Design, Implementation, and Emergent Applications (pp. 1-16).
[17] Busck, N. & Svensson, F. (2017). Assembly Instructions for the Swedish Manufacturing Industry of the Future, Department of Product and Production Development, Chalmers University of Technology, Master’s thesis.
[18] Syberfeldt, A., Danielsson, O., Holm, M., & Wang, L. (2015). Visual assembling guidance using augmented reality. Procedia Manufacturing (p. 1, pp. 98-109).
[19] Zhang, J., Ong, S. K., & Nee, A. Y. C. (2011). RFID-assisted assembly guidance system in an augmented reality environment. International Journal of Production Research (pp. 3919-3938).
[20] Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education (p. 71, pp. 185-197).
[21] Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing (pp. 1-22).
[22] Funk, M., Kosch, T., & Schmidt, A. (2016). Interactive worker assistance: comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 934-939)
[23] Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 75-82).
[24] Funk, M., Kosch, T., Greenwald, S. W., & Schmidt, A. (2015). A benchmark for interactive augmented reality instructions for assembly tasks. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia (pp. 253-257).
[25] Radkowski, R., Herrema, J., & Oliver, J. (2015). Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human-Computer Interaction (pp. 337-349).
[26] Boothroyd, G., Dewhurst, P., & Knight, W. A. (2010). Product design for manufacture and assembly, 3rd edition. Boca Raton, FL: CRC Press.
[27] Nof, S. Y., Wilhelm, W. E., & Warnecke, H.-J. (1997). Industrial assembly. Chapman & Hall: London, UK.
[28] Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments (pp. 778-798).
[29] 吳哲宇,擴增實境應用於 DIY 傢俱組裝之可行性設計研究,大同大學工業設計學系所,碩士論文,2012。
[30] NASA-TLX: https://humansystems.arc.nasa.gov/groups/tlx/
[31] Zeid, I. & Sivasubramanian, R. (1991). CAD/CAM theory and practice (Vol. 6). New York: McGraw-Hill.
[32] 范振能,以圖文操作說明及視覺類比增進使用者客製形態記憶塑膠家具能力之研究,國科會研究計畫報告NSC98-2410-H011-013,2009。
[33] ARToolKit: https://daqri.com/
[34] Vuforia: https://www.vuforia.com/
[35] Visual Studio: https://visualstudio.microsoft.com/
[36] Android Studio: https://developer.android.com/studio/
[37] Unity: https://unity3d.com/
[38] Scheffe, H. (1947). The relation of control charts to analysis of variance and chi-square tests. Journal of the American Statistical Association (pp. 425-431).
[39] Microsoft HoloLens: https://www.microsoft.com/en-us/hololens
[40] EPSON BT-200: https://www.epson.com.tw/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *