帳號:guest(18.188.70.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):饒展維
作者(外文):Jao, Chen-Wei
論文名稱(中文):混合改良簡化群差異進化以及循序二次規劃法求解動態經濟排放調度問題
論文名稱(外文):iSSODE-SQP for Dynamic Economic Emission Dispatch Problem
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):張桂琥
鍾武勳
口試委員(外文):Chang, Kuei-Hu
Chung, Wu-Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034556
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:動態經濟排放調度問題改良簡化群體演算法差異進化演算法循序二次規劃法
外文關鍵詞:Dynamic Economic Emission Dispatch ProblemImproved Simplified Swarm OptimizationDifferential EvolutionSequential Quadratic Programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:589
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
動態經濟排放調度問題(Dynamic Economic Emission Dispatch Problem, DEED)為研究火力發電的著名問題,此問題之所以被學者大量討論是因為近年來環保意識高漲,石化能源日益減少,以及日益增加的能源需求,讓我們驚覺必須更有效率的使用地球資源,並減少社會發展所造成的環境成本。DEED問題的目標是透過安排發電機組(generation)的發電量,來滿足電力需求(demand)的變化,並達到減少燃料成本(Fuel cost)以及廢氣排放量(Emission)。
DEED問題多半在探討發電機組數為十台以下的情境,然而時至今日,國內火力發電廠的發電機組規模最多以可以到達十四台,為了更符合現今火力發電廠之規模,DEED問題勢必要探討更多發電機組的情境,在更多發電機組的情境中,發電機組的交互作用所產生的傳輸耗損(transmission loss)會更為複雜,且更多的發電機組,亦代表著有更多的可以滿足電力需求的發電量組合,而要如何在合理的時間內找出優秀的發電量組合,將會變得更加困難。
本篇論文將利用權重方法來表示燃料成本以及廢氣排放量之間的權衡關係,並採用混合改良簡化群差異進化以及循序二次規劃(Improved Simplified Swarm Optimization with Differential Evolution and Sequential Quadratic Programming, iSSODE-SQP)來解決動態經濟排放調度問題(Dynamic Economic Emission Dispatch Problem, DEED)。此方法也會與著名的混合差異進化及循序二次規劃法(Hybrid DE-SQP)、混合粒子群及循序二次規劃法 (Hybrid PSO-SQP)進行比較與討論;結果顯示,本研究提出的研究方法能夠有效的求解DEED問題,且在發電機超過10台的問題情境下也可取得優秀的成效。
The Dynamic economic emission dispatch (DEED) problem is a frequently discussed issue for thermal power system. The reason why DEED problem is discussed in the recent year is because of the rising awareness of environmental protection, and the decreasing of petrochemical energy. The goal of DEED problem is to meet the load demand by arranging generating units’ outputs, to achieve reductions in fuel costs and emissions.
Most of the relevant literature of DEED problem only discuss 10 generating units below, however, the generating unit size of the domestic thermal power plant can reach up to 14 units. In order to be more in line with the scale of today's thermal power plants, it is necessary to discuss the case of more generating units. In the case of more generator units, there are more different generation combinations, and the transmission loss caused by the interaction of the generating units will be more complicated, which would be difficult to find the exact solution in an acceptable time.
In this paper, we present a hybrid method called Improved Simplified Swarm Optimization with Differential Evolution and Sequential Quadratic Programming, (iSSODE-SQP). In addition, we apply weighting method to trade off the fuel costs and the emission. Afterwards, the results of iSSODE-SQP will be compared with Hybrid DE-SQP, Hybrid PSO-SQP, and iSSO-SQP. Finally, the experimental results show that that the proposed method iSSODE-SQP is effective on the DEED problem, even it performs well in the case of more than 10 generating units
摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VI
第一章、緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3研究架構 4
第二章、問題描述 6
2.1縮寫 6
2.2DEED問題之數學模型 6
第三章、文獻回顧 9
3.1動態經濟排放調度問題 9
3.2改良簡化群體演算法 13
3.3差異進化演算法 14
3.4循序二次規劃法 15
第四章、研究方法 17
4.1粒子編碼方式 17
4.2利用權重法改寫適應值函數 18
4.3改良簡化群體演算法 19
4.4差異進化區域搜尋法 23
4.5循序二次規劃法 28
4.6混合改良簡化群體差異進化以及循序二次規劃法之流程 30
第五章、實驗結果與分析 32
5.1實驗設計 32
5.2實驗情境 38
5.3實驗結果 39
第六章、結論與未來研究方向 45
6.1結論 45
6.2未來研究方向 46
參考文獻 47
[1] M. Basu, Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch, Electric Power Components and Systems, 34 (2006) 1015-1025.
[2] X. Yuan, L. Wang, Y. Zhang, Y. Yuan, A hybrid differential evolution method for dynamic economic dispatch with valve-point effects, Expert systems with applications, 36 (2009) 4042-4048.
[3] M. Basu, Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II, International Journal of Electrical Power & Energy Systems, 30 (2008) 140-149.
[4] A. Elaiw, X. Xia, A. Shehata, Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects, Electric Power Systems Research, 103 (2013) 192-200.
[5] K. Mason, J. Duggan, E. Howley, Multi-Objective Dynamic Economic Emission Dispatch using Particle Swarm Optimisation Variants.
[6] N. Pandit, A. Tripathi, S. Tapaswi, M. Pandit, An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch, Applied Soft Computing, 12 (2012) 3500-3513.
[7] K. Mason, J. Duggan, E. Howley, A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch, International Journal of Electrical Power & Energy Systems, 100 (2018) 201-221.
[8] J. Cai, X. Ma, Q. Li, L. Li, H. Peng, A multi-objective chaotic particle swarm optimization for environmental/economic dispatch, Energy Conversion and Management, 50 (2009) 1318-1325.
[9] P. Hota, A. Barisal, R. Chakrabarti, Economic emission load dispatch through fuzzy based bacterial foraging algorithm, International Journal of Electrical Power & Energy Systems, 32 (2010) 794-803.
[10] W.-C. Yeh, An improved simplified swarm optimization, Knowledge-Based Systems, 82 (2015) 60-69.
[11] D.W. Ross, S. Kim, Dynamic economic dispatch of generation, IEEE Transactions on Power Apparatus and Systems, (1980) 2060-2068.
[12] M.A. Abido, Environmental/economic power dispatch using multiobjective evolutionary algorithms, IEEE Transactions on Power Systems, 18 (2003) 1529-1537.
[13] A. Elaiw, X. Xia, A. Shehata, Application of model predictive control to optimal dynamic dispatch of generation with emission limitations, Electric power systems research, 84 (2012) 31-44.
[14] S.F. Brodsky, R.W. Hahn, Assessing the influence of power pools on emission constrained economic dispatch, IEEE transactions on power systems, 1 (1986) 57-62.
[15] G. Granelli, M. Montagna, G. Pasini, P. Marannino, Emission constrained dynamic dispatch, Electric Power Systems Research, 24 (1992) 55-64.
[16] Y. Song, I.-K. Yu, Dynamic load dispatch with voltage security and environmental constraints, Electric Power Systems Research, 43 (1997) 53-60.
[17] M. Basu, Dynamic economic emission dispatch using evolutionary programming and fuzzy satisfying method, International Journal of Emerging Electric Power Systems, 8 (2007).
[18] C. Guo, J. Zhan, Q. Wu, Dynamic economic emission dispatch based on group search optimizer with multiple producers, Electric power systems research, 86 (2012) 8-16.
[19] H. Zhang, D. Yue, X. Xie, S. Hu, S. Weng, Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch, Applied Soft Computing, 34 (2015) 312-323.
[20] J. Alsumait, M. Qasem, J. Sykulski, A. Al-Othman, An improved pattern search based algorithm to solve the dynamic economic dispatch problem with valve-point effect, Energy Conversion and Management, 51 (2010) 2062-2067.
[21] G. Granelli, P. Marannino, M. Montagna, A. Silvestri, Fast and efficient gradient projection algorithm for dynamic generation dispatching, in: IEE Proceedings C (Generation, Transmission and Distribution), IET, 1989, pp. 295-302.
[22] K.S. Hindi, M. Ab Ghani, Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach, International Journal of Electrical Power & Energy Systems, 13 (1991) 51-56.
[23] C. Somuah, N. Khunaizi, Application of linear programming redispatch technique to dynamic generation allocation, IEEE Transactions on Power Systems, 5 (1990) 20-26.
[24] X. Han, H. Gooi, D.S. Kirschen, Dynamic economic dispatch: feasible and optimal solutions, IEEE Transactions on Power Systems, 16 (2001) 22-28.
[25] D.L. Travers, R.J. Kaye, Dynamic dispatch by constructive dynamic programming, IEEE Transactions on Power Systems, 13 (1998) 72-78.
[26] G. Irisarri, L. Kimball, K. Clements, A. Bagchi, P. Davis, Economic dispatch with network and ramping constraints via interior point methods, IEEE Transactions on Power Systems, 13 (1998) 236-242.
[27] X. Xia, A. Elaiw, Optimal dynamic economic dispatch of generation: A review, Electric Power Systems Research, 80 (2010) 975-986.
[28] C. Panigrahi, P. Chattopadhyay, R. Chakrabarti, M. Basu, Simulated annealing technique for dynamic economic dispatch, Electric power components and systems, 34 (2006) 577-586.
[29] W. Ongsakul, J. Tippayachai, Parallel micro genetic algorithm based on merit order loading solutions for constrained dynamic economic dispatch, Electric Power Systems Research, 61 (2002) 77-88.
[30] R. Balamurugan, S. Subramanian, An improved differential evolution based dynamic economic dispatch with nonsmooth fuel cost function, Journal of Electrical Systems, 3 (2007) 151-161.
[31] T. Niknam, F. Golestaneh, Enhanced adaptive particle swarm optimisation algorithm for dynamic economic dispatch of units considering valve-point effects and ramp rates, IET generation, transmission & distribution, 6 (2012) 424-435.
[32] B. Panigrahi, V.R. Pandi, S. Das, Adaptive particle swarm optimization approach for static and dynamic economic load dispatch, Energy conversion and management, 49 (2008) 1407-1415.
[33] M. Basu, Artificial immune system for dynamic economic dispatch, International Journal of Electrical Power & Energy Systems, 33 (2011) 131-136.
[34] S. Hemamalini, S.P. Simon, Dynamic economic dispatch using artificial immune system for units with valve-point effect, International Journal of Electrical Power & Energy Systems, 33 (2011) 868-874.
[35] S. Hemamalini, S.P. Simon, Dynamic economic dispatch using artificial bee colony algorithm for units with valve‐point effect, International Transactions on Electrical Energy Systems, 21 (2011) 70-81.
[36] V.R. Pandi, B.K. Panigrahi, Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm, Expert Systems with Applications, 38 (2011) 8509-8514.
[37] L. Wang, C. Singh, Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm, Electric Power Systems Research, 77 (2007) 1654-1664.
[38] W. Yeh, Study on quickest path networks with dependent components and apply to RAP, Rep. NSC, (2008) 97-2221.
[39] C.-L. Huang, A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems, Reliability Engineering & System Safety, 142 (2015) 221-230.
[40] W.-C. Yeh, Novel swarm optimization for mining classification rules on thyroid gland data, Information Sciences, 197 (2012) 65-76.
[41] W.-C. Yeh, Y.-M. Yeh, C.-H. Chou, Y.-Y. Chung, X. He, A radio frequency identification network design methodology for the decision problem in Mackay Memorial Hospital based on swarm optimization, in: Evolutionary Computation (CEC), 2012 IEEE Congress on, IEEE, 2012, pp. 1-7.
[42] W.-C. Yeh, Simplified swarm optimization in disassembly sequencing problems with learning effects, Computers & Operations Research, 39 (2012) 2168-2177.
[43] W. Gao, C. Song, J. Jiang, C. Zhang, Simplified Particle Swarm Optimization Algorithm Based on Improved Learning Factors, in: International Symposium on Neural Networks, Springer, 2017, pp. 321-328.
[44] W.C. Yeh, Y.T. Yang, C.M. Lai, A Hybrid Simplified Swarm Optimization Method for Imbalanced Data Feature Selection, Australian Academy of Business and Economics Review, 2 (2017) 263-275.
[45] X. Zhang, W.-c. Yeh, Y. Jiang, Y. Huang, Y. Xiao, L. Li, A Case Study of Control and Improved Simplified Swarm Optimization for Economic Dispatch of a Stand-Alone Modular Microgrid, Energies, 11 (2018) 793.
[46] C.-M. Lai, W.-C. Yeh, C.-Y. Chang, Gene selection using information gain and improved simplified swarm optimization, Neurocomputing, 218 (2016) 331-338.
[47] W.-C. Yeh, Y. Jiang, Y.-F. Chen, Z. Chen, A New Soft Computing Method for K-Harmonic Means Clustering, PloS one, 11 (2016) e0164754.
[48] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization, 11 (1997) 341-359.
[49] G. Tian, Y. Ren, M. Zhou, Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm, IEEE Transactions on Intelligent Transportation Systems, 17 (2016) 3009-3021.
[50] W. Shao, D. Pi, A self-guided differential evolution with neighborhood search for permutation flow shop scheduling, Expert Systems with Applications, 51 (2016) 161-176.
[51] E. Zorarpacı, S.A. Özel, A hybrid approach of differential evolution and artificial bee colony for feature selection, Expert Systems with Applications, 62 (2016) 91-103.
[52] M. Pal, S. Bandyopadhyay, Many-objective feature selection for motor imagery EEG signals using differential evolution and support vector machine, in: Microelectronics, Computing and Communications (MicroCom), 2016 International Conference on, IEEE, 2016, pp. 1-6.
[53] D.-X. Zou, G. Pan, H.-W. Qi, Y.-P. Li, An effective modified differential evolution algorithm for reliability problems, in: Computational and Business Intelligence (ISCBI), 2016 4th International Symposium on, IEEE, 2016, pp. 132-136.
[54] P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta numerica, 4 (1995) 1-51.
[55] P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function, IEEE Transactions on Power Systems, 17 (2002) 411-416.
[56] T.A.A. Victoire, A.E. Jeyakumar, A modified hybrid EP–SQP approach for dynamic dispatch with valve-point effect, International Journal of Electrical Power & Energy Systems, 27 (2005) 594-601.
[57] L. Jiang, S. Lu, Y. Gu, J. Zhao, Time-Jerk Optimal Trajectory Planning for a 7-DOF Redundant Robot Using the Sequential Quadratic Programming Method, in: International Conference on Intelligent Robotics and Applications, Springer, 2017, pp. 343-353.
[58] A. Gharaei, S.H.R. Pasandideh, Modeling and optimization of four-level integrated supply chain with the aim of determining the optimum stockpile and period length: sequential quadratic programming, Journal of Industrial and Production Engineering, 34 (2017) 529-541.
[59] T. Lin, S. Chen, M. Yu, Solving the cutting-stock problem by using the Sequential Quadratic Programming optimization method, in: Industrial Engineering and Engineering Management (IEEM), 2016 IEEE International Conference on, IEEE, 2016, pp. 1699-1702
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *