|
1. Abacha, A. B., Da Silveira, M., & Pruski, C. (2013). Medical ontology validation through question answering. In Conference on Artificial Intelligence in Medicine in Europe (pp. 196-205). Springer, Berlin, Heidelberg. 2. Abbas, O. A. (2008). Comparisons Between Data Clustering Algorithms. International Arab Journal of Information Technology (IAJIT), 5(3). 3. Alliance, S. C. (2011). The mobile payments and NFC landscape: A US perspective. Smart Card Alliance, 1-53. 4. Altuntas, S., Dereli, T., & Kusiak, A. (2015). Forecasting technology success based on patent data. Technological Forecasting and Social Change, 96, 202-214. Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3-13. 5. Anzai, Y. (2012). Pattern recognition and machine learning. Elsevier. 6. Beltz, H., Fülöp, A., Wadhwa, R. R., & Érdi, P. (2017). From ranking and clustering of evolving networks to patent citation analysis. In Neural Networks (IJCNN), 2017 International Joint Conference on (pp. 1388-1394). IEEE. 7. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. 8. Brown, P. F., Pietra, V. J. D., Mercer, R. L., Pietra, S. A. D., & Lai, J. C. (1992). An estimate of an upper bound for the entropy of English. Computational Linguistics, 18(1), 31-40. 9. Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143. 10. Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB journal, 7(3), 163-178. 11. Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies, and why do we need them?. IEEE Intelligent Systems and their applications, 14(1), 20-26. 12. Comanor, W. S., & Scherer, F. M. (1969). Patent statistics as a measure of technical change. Journal of political economy, 77(3), 392-398. 13. Coughlin, D. M., Campbell, M. C., & Jansen, B. J. (2016). A web analytics approach for appraising electronic resources in academic libraries. Journal of the Association for Information Science and Technology, 67(3), 518-534. 14. Choukri, D. (2014). A new distributed expert system to ontology evaluation. Procedia Computer Science, 37, 48-55. 15. D'Agostini, G. (2003). Bayesian inference in processing experimental data: principles and basic applications. Reports on Progress in Physics, 66(9), 1383. 16. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012. 17. De Bellis, N. (2009). Bibliometrics and citation analysis: from the science citation index to cybermetrics. Scarecrow Press. 18. Fattori, M., Pedrazzi, G., & Turra, R. (2003). Text mining applied to patent mapping: a practical business case. World Patent Information, 25(4), 335-342. 19. Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91, 280-294. 20. Gao, Y., Wang, M., Zha, Z. J., Shen, J., Li, X., & Wu, X. (2013). Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing, 22(1), 363-376. 21. Girolami, M., & Kabán, A. (2003). On an equivalence between PLSI and LDA. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 433-434). ACM. 22. Gregory, J. (2015). The Internet of Things: revolutionizing the retail industry. Accenture Strategy. 23. Grüninger, M., & Fox, M. S. (1995). The role of competency questions in enterprise engineering. In Benchmarking—Theory and practice (pp. 22-31). Springer US. 24. Guarino, N. (1997). Understanding, building and using ontologies. International Journal of Human-Computer Studies, 46(2-3), 293-310. 25. Guha, S., & Mishra, N. (2016). Clustering data streams. In Data Stream Management (pp. 169-187). Springer, Berlin, Heidelberg. 26. Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent systems, 16(2), 30-37. 27. Hoang, D. T., Kaur, J., & Menczer, F. (2010). Crowdsourcing scholarly data. 28. Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence (pp. 289-296). Morgan Kaufmann Publishers Inc. 29. Horridge, M., Knublauch, H., Rector, A., Stevens, R., & Wroe, C. (2004). A Practical Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools Edition 1.0. University of Manchester. 30. Hsu, F. C., Trappey, A. J., Trappey, C. V., Hou, J. L., & Liu, S. J. (2006). Technology and knowledge document cluster analysis for enterprise R&D strategic planning. International Journal of Technology Management, 36(4), 336-353. 31. Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812. 32. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., & Saarela, A. (2000). Self organization of a massive document collection. IEEE transactions on neural networks, 11(3), 574-585. 33. Korobkin, D., Fomenkov, S., Kravets, A., Kolesnikov, S., & Dykov, M. (2015). Three-steps methodology for patents prior-art retrieval and structured physical knowledge extracting. Creativity in Intelligent Technologies and Data Science. CCIS, 535, 124-136. 34. Kostoff, R. N., Toothman, D. R., Eberhart, H. J., & Humenik, J. A. (2001). Text mining using database tomography and bibliometrics: A review. Technological Forecasting and Social Change, 68(3), 223-253. 35. Kushner, H., & Yin, G. G. (2003). Stochastic approximation and recursive algorithms and applications (Vol. 35). Springer Science & Business Media. 36. Larkey, L. S. (1999). A patent search and classification system. In Proceedings of the fourth ACM conference on Digital libraries (pp. 179-187). ACM. 37. Lee, Y., Kim, S. Y., Song, I., Park, Y., & Shin, J. (2014). Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis. Scientometrics, 100(1), 227-244. 38. Lemley, M. A., & Shapiro, C. (2005). Probabilistic patents. The Journal of Economic Perspectives, 19(2), 75-98. 39. Liu, K., & Chen, Y. (2014). A study of patent numbers forecasting by linear regression on cloud storage technology. International Journal of Arts and Commerce, 3(8), 207-217. 40. Ma, J., & Porter, A. L. (2015). Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics, 102(1), 811-827. 41. Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48. 42. Maskeri, G., Sarkar, S., & Heafield, K. (2008). Mining business topics in source code using latent dirichlet allocation. In Proceedings of the 1st India software engineering conference(pp. 113-120). ACM. 43. Meireles, M. R. G., Carvalho, J. R., do Patrocínio Júnior, Z. K., & Almeida, P. E. (2017). Automatic Patent Clustering using SOM and Bibliographic Coupling. iSys-Revista Brasileira de Sistemas de Informação, 10(1), 06-18. 44. Merkl, D. (1998). Text classification with self-organizing maps: Some lessons learned. Neurocomputing, 21(1), 61-77. 45. Mogee, M. E. (1991). Using patent data for technology analysis and planning. Research-Technology Management, 34(4), 43-49. 46. Morris, S., DeYong, C., Wu, Z., Salman, S., & Yemenu, D. (2002). DIVA: a visualization system for exploring document databases for technology forecasting. Computers & Industrial Engineering, 43(4), 841-862. 47. Noh, H., Jo, Y., & Lee, S. (2015). Keyword selection and processing strategy for applying text mining to patent analysis. Expert Systems with Applications, 42(9), 4348-4360. 48. Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. 49. Pantano, E., & Timmermans, H. (2014). What is smart for retailing?. Procedia Environmental Sciences, 22, 101-107. 50. Pavlik, J. V., & McIntosh, S. (2018). Converging media. Oxford University Press. 51. Pilkington, A. (2003, July). Technology commercialisation: Patent portfolio alignment and the fuel cell. In Management of Engineering and Technology, 2003. PICMET'03. Technology Management for Reshaping the World. Portland International Conference on (pp. 400-407). IEEE. 52. Plouffe, C. R., Vandenbosch, M., & Hulland, J. (2000). Why smart cards have failed: looking to consumer and merchant reactions to a new payment technology. International Journal of Bank Marketing, 18(3), 112-123. 53. Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., ... & Duchesnay, E. (2016). scikit-learn: Machine Learning in Python. 54. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. 55. Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321-352). Springer US. 56. Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and documents. In Proceedings of the 20th conference on Uncertainty in artificial intelligence (pp. 487-494). AUAI Press.Kim, G. J., Park, S. S., & Jang, D. S. (2015). Technology forecasting using topic-based patent analysis. 57. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65. 58. Schaer, P. (2013). Applied informetrics for digital libraries: an overview of foundations, problems and current approaches. Historical Social Research/Historische Sozialforschung, 267-281. 59. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47. 60. Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440. 61. Skrypnyk, I., & Lowe, D. G. (2004, November). Scene modelling, recognition and tracking with invariant image features. In Mixed and Augmented Reality, 2004. ISMAR 2004. Third IEEE and ACM International Symposium on (pp. 110-119). IEEE. 62. Sure, Y., Staab, S., & Studer, R. (2004). On-to-knowledge methodology (OTKM). In Handbook on ontologies (pp. 117-132). Springer Berlin Heidelberg. 63. Tang, J., Wang, B., Yang, Y., Hu, P., Zhao, Y., Yan, X., ... & Usadi, A. K. (2012). PatentMiner: topic-driven patent analysis and mining. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1366-1374). ACM. 64. Tartir, S., Arpinar, I. B., & Sheth, A. P. (2010). Ontological evaluation and validation. In Theory and applications of ontology: Computer applications (pp. 115-130). Springer Netherlands. 65. Thrun, S. (2010). Toward robotic cars. Communications of the ACM, 53(4), 99-106. 66. Trappey, A. J., Hsu, F. C., Trappey, C. V., & Lin, C. I. (2006). Development of a patent document classification and search platform using a back-propagation network. Expert Systems with Applications, 31(4), 755-765. 67. Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64. 68. Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. 69. Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. The knowledge engineering review, 11(2), 93-136. 70. Uschold, M., & King, M. (1995). Towards a methodology for building ontologies (pp. 15-30). Edinburgh: Artificial Intelligence Applications Institute, University of Edinburgh. 71. Velmurugan, T., & Santhanam, T. (2010). Computational complexity between K means and K-medoids clustering algorithms for normal and uniform distributions of data points. Journal of computer science, 6(3), 363. 72. Wang, W., Barnaghi, P. M., & Bargiela, A. (2010). Probabilistic topic models for learning terminological ontologies. IEEE Transactions on Knowledge and Data Engineering, 22(7), 1028-1040. 73. Wang, X., Qiu, P., Zhu, D., Mitkova, L., Lei, M., & Porter, A. L. (2015). Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells. Technological forecasting and social change, 98, 24-46. 74. Watts, R. J., & Porter, A. L. (2007). Mining conference proceedings for corporate technology knowledge management. International Journal of Innovation and Technology Management, 4(02), 103-119. 75. Williamson, S., Wang, C., Heller, K. A., & Blei, D. M. (2010). The IBP compound Dirichlet process and its application to focused topic modeling. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 1151-1158). 76. Ye, M., Li, C., Chen, G., & Wu, J. (2005). EECS: an energy efficient clustering scheme in wireless sensor networks. In Performance, Computing, and Communications Conference, 2005. IPCCC 2005. 24th IEEE International (pp. 535-540). IEEE. 77. Yoon, B., & Lee, S. (2008, June). Patent analysis for technology forecasting: Sector-specific applications. In Engineering Management Conference, 2008. IEMC Europe 2008. IEEE International (pp. 1-5). IEEE. 78. Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37-50. 79. Yoon, B., & Park, Y. (2007). Development of new technology forecasting algorithm: Hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Transactions on Engineering Management, 54(3), 588-599. 80. Zhi, L., & Wang, H. (2009, December). A Construction Method of Ontology in Patent Domain Based on UML and OWL. In Information Management, Innovation Management and Industrial Engineering, 2009 International Conference on (Vol. 3, pp. 224-227). IEEE. 81. Zhou, X., Zhang, Y., Porter, A. L., Guo, Y., & Zhu, D. (2014). A patent analysis method to trace technology evolutionary pathways. Scientometrics, 100(3), 705-721.
|