|
[1] Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Chuang, A. C., & Sun, J. J. (2017). A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Advanced Engineering Informatics, 33, 208-229. [2] Akkaya, I., Derler, P., Emoto, S., & Lee, E. A. (2016). Systems engineering for industrial cyber–physical systems using aspects. Proceedings of the IEEE, 104(5), 997-1012. [3] Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of Innovation Management, 3(4), 16-21. [4] Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Sun, J. J., & Chuang, A. C. (2016). A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing. IEEE Access, 4, 7356-7382. [5] Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31. [6] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. [7] Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44. [8] Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. [9] Derler, P., Lee, E. A., & Vincentelli, A. S. (2012). Modeling cyber–physical systems. Proceedings of the IEEE, 100(1), 13-28. [10] Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225-2236. [11] Ivanov, D., Dolgui, A., Sokolov, B., Werner, F., & Ivanova, M. (2016). A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. International Journal of Production Research, 54(2), 386-402. [12] Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion. [13] Kopetz, H. (2011). Real-time systems: design principles for distributed embedded applications. Springer Science & Business Media. [14] Krotofil, M., & Cárdenas, A. A. (2013). Resilience of process control systems to cyber-physical attacks. In Nordic Conference on Secure IT Systems (pp. 166-182). Springer, Berlin, Heidelberg. [15] Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239-242. [16] Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. [17] Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16, 3-8. [18] Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11-25. [19] Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R news, 2(3), 18-22. [20] Loskyll, M., Heck, I., Schlick, J., & Schwarz, M. (2012). Context-based orchestration for control of resource-efficient manufacturing processes. Future Internet, 4(3), 737-761. [21] Sackey, S. M., & Bester, A. (2016). Industrial engineering curriculum in Industry 4.0 in a South African context. South African Journal of Industrial Engineering, 27(4), 101-114. [22] Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25. [23] Tu, Y. K., Kellett, M., Clerehugh, V., & Gilthorpe, M. S. (2005). Problems of correlations between explanatory variables in multiple regression analyses in the dental literature. British dental journal, 199(7), 457-461. [24] Wang, M. H., & Hung, C. P. (2003). Extension neural network and its applications. Neural Networks, 16(5), 779-784. [25] Wang, M. H., & Hung, C. P. (2003, July). Extension neural network. In Neural Networks, 2003. Proceedings of the International Joint Conference on (Vol. 1, pp. 399-403). IEEE. [26] Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168. [27] Chen, Y. H., Ho, P. H., & Chiu, M. C. (2017). Utilizing Cyber Physical System to Achieve Intelligent Product Design: A Case Study of Transformer. Transdisciplinary Engineering: A Paradigm Shift, 1031. [28] Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14-23. [29] Muñoz-Romero, S., Gómez-Verdejo, V., & Parrado-Hernández, E. (2017). A novel framework for parsimonious multivariate analysis. Pattern Recognition. [30] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239-250. [31] Patterson, C., Vasquez, R., & Hu, F. (2013). Cyber-Physical Systems: Design Challenges. Cyber-Physical Systems: Integrated Computing and Engineering Design, 101. [32] Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. [33] Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., ... & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621-641. [34] Yu, X., & Xue, Y. (2016). Smart grids: A cyber–physical systems perspective. Proceedings of the IEEE, 104(5), 1058-1070. [35] Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., ... & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264-272. [36] Srivastava, S., Engelhardt, B. E., & Dunson, D. B. (2017). Expandable factor analysis. Biometrika, 104(3), 649-663. [37] Niu, X., Liu, G., Huo, L., Zhang, J., Bai, M., Peng, Y., & Zhang, Z. (2018). Risk stratification based on components of the complete blood count in patients with acute coronary syndrome: A classification and regression tree analysis. Scientific reports, 8(1), 2838. [38] Sridhar, S., Hahn, A., & Govindarasu, M. (2012). Cyber-Physical System Security for the Electric Power Grid. Proceedings of the IEEE, 100(1), 210-224.\ [39] Huda, S., Miah, S., Hassan, M. M., Islam, R., Yearwood, J., Alrubaian, M., & Almogren, A. (2017). Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data. Information Sciences, 379, 211-228. [40] Siryani, J., Tanju, B., & Eveleigh, T. J. (2017). A Machine Learning Decision-Support System Improves the Internet of Things’ Smart Meter Operations. IEEE Internet of Things Journal, 4(4), 1056-1066. [41] Schmidt, M., & Åhlund, C. (2018). Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency. Renewable and Sustainable Energy Reviews, 90, 742-756. [42] Liang, Y. C., Lu, X., Li, W. D., & Wang, S. (2018). Cyber Physical System and Big Data enabled energy efficient machining optimisation. Journal of Cleaner Production, 187, 46-62. [43] Leinweber, D. J. (2007). Stupid data miner tricks: overfitting the S&P 500. Journal of Investing, 16(1), 15. Li, Z., Braun, T., Zhao, X., Zhao, Z., Hu, F., & Liang, H. (2018). A narrow-band indoor positioning system by fusing time and received signal strength via ensemble learning. IEEE Access, 6, 9936-9950. [44] Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041-1054. [45] Kwon, C., & Hwang, I. (2018). Reachability Analysis for Safety Assurance of Cyber-Physical Systems Against Cyber Attacks. IEEE Trans. Automat. Contr., 63(7), 2272-2279. [46] Khair, U., Fahmi, H., Al Hakim, S., & Rahim, R. (2017, December). Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error. In Journal of Physics: Conference Series (Vol. 930, No. 1, p. 012002). IOP Publishing. [47] Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
|