|
1.勞動部勞動及職業安全衛生研究所,「工作環境安全衛生狀況認知調查-2013年」。勞安所研究報告(IOSH102-M306),98-102,2013。 2.勞動部職業安全衛生署(2018),職業病鑑定。 取自:https://www.osha.gov.tw/1106/1176/1185/1186/2623/ 3.行政院勞委會勞工安全衛生研究所(2008),勞工衛生與職業病預防概論。取自:https://www.ilosh.gov.tw/menu/1223/1235/1237/%E5%8B%9E%E5%B7%A5%E5%AE%89%E5%85%A8%E8%88%87%E8%81%B7%E6%A5%AD%E5%82%B7%E5%AE%B3%E9%A0%90%E9%98%B2%E6%A6%82%E8%AB%96/ 4.勞動部職業安全衛生署(2015),「人因性危害預防計畫指引」。 取自:https://www.osha.gov.tw/1106/1251/10159/10173/10309/ 5.職業安全衛生法 - 勞動部勞動法令查詢系統-所有條文(2013),職業安全衛生法。取自:http://laws.mol.gov.tw/flaw/FLAWDAT0201.aspx?lsid=FL015013 6.以 SOWT 分析光學式動作擷取系統發展趨勢. 2010 年第三屆運動科學暨休閒遊憩管理學術研討會論文集, 2011. 7.詳解慣性動作捕捉技術的應用領域(2017)。 取自:https://hk.saowen.com/a/6e0c5a12156d7f0c386d1be0d2d5dbe43303492faf409c3254b753cd6810c659
8.勞動部勞動及職業安全衛生研究所(2015),「肌肉骨骼健康狀態之職場相關因子 關聯性探討」。 取自:https://labor-elearning.mol.gov.tw/base/10001/door/%E5%A0%B1%E5%91%8A%E5%8D%80/795_ILOSH103-H504%E8%82%8C%E8%82%89%E9%AA%A8%E9%AA%BC%E5%81%A5%E5%BA%B7%E7%8B%80%E6%85%8B%E4%B9%8B%E8%81%B7%E5%A0%B4%E7%9B%B8%E9%97%9C%E5%9B%A0%E5%AD%90%E9%97%9C%E8%81%AF%E6%80%A7%E6%8E%A2%E8%A8%8E.pdf 9.勞動部勞動及職業安全衛生研究所(2014),「人因工程肌肉骨骼傷病預防指引」。 取自:http://laws.ilosh.gov.tw/ioshcustom/Web/TechPublications/Detail?id=135 10.武文孝(2016)。越南家事清潔人員累積性肌肉骨骼傷害之研究(碩士論文)。取自:http://ir.lib.kuas.edu.tw/handle/987654321/16061 11.林慕宗(2017)。肌肉骨骼危害防制實物探討-以面板製造為例(碩士論文)。取自:https://ir.lib.ntut.edu.tw/wSite/ct?mp=ntut&xItem=68996&ctNode=447
外文部分: 1.Baek, S., & Kim, M. (2016). Real-Time Dynamic Motion Capture Using Multiple Kinects. In Advances in Computer Science and Ubiquitous Computing (pp. 29-35): Springer. 2.Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3.Chowdhury, S. S., Boricha, J., & Yardi, S. (2012). Identification of awkward postures that cause discomfort to Liquid Petroleum Gas workers in Mumbai, India. Indian journal of occupational and environmental medicine, 16(1), 3. 4.Coenen, P., Kingma, I., Boot, C. R., Bongers, P. M., & van Dieën, J. H. (2013). Inter-rater reliability of a video-analysis method measuring low-back load in a field situation. Applied ergonomics, 44(5), 828-834. 5.Coenen, P., Kingma, I., Boot, C. R., Faber, G. S., Xu, X., Bongers, P. M., & Van Dieen, J. H. (2011). Estimation of low back moments from video analysis: A validation study. Journal of biomechanics, 44(13), 2369-2375. 6.Genaidy, A., Simmons, R. J., Guo, L., & Hidalgo, J. (1993). Can visual perception be used to estimate body part angles? Ergonomics, 36(4), 323-329. 7.Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied ergonomics, 31(2), 201-205. 8.Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (2016). Deepercut: A deeper, stronger, and faster multi-person pose estimation model. Paper presented at the European Conference on Computer Vision. 9.Iqbal, U., & Gall, J. (2016). Multi-person pose estimation with local joint-to-person associations. Paper presented at the European Conference on Computer Vision. 10.Kivi, P., & Mattila, M. (1991). Analysis and improvement of work postures in the building industry: application of the computerised OWAS method. Applied ergonomics, 22(1), 43-48. 11.Krüger, J., & Nguyen, T. D. (2015). Automated vision-based live ergonomics analysis in assembly operations. CIRP Annals, 64(1), 9-12. 12.Malaisé, A., Maurice, P., Colas, F., & Ivaldi, S. (2019). Activity Recognition for Ergonomics Assessment of Industrial Tasks with Automatic Feature Selection. IEEE Robotics and Automation Letters, 4(2), 1132-1139. 13.Mattila, M., Karwowski, W., & Vilkki, M. (1993). Analysis of working postures in hammering tasks on building construction sites using the computerized OWAS method. Applied ergonomics, 24(6), 405-412. 14.Moussavi-Najarkola, S. A., & Mirzaei, R. (2012). Assessment of musculoskeletal loads of electric factory workers by rapid entire body assessment. Health Scope, 1(2), 71-79. 15.Norkin, C. C., & White, D. J. (2016). Measurement of joint motion: a guide to goniometry: FA Davis. 16.Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P. V., & Schiele, B. (2016). Deepcut: Joint subset partition and labeling for multi person pose estimation. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 17.Roquelaure, Y., Ha, C., Rouillon, C., Fouquet, N., Leclerc, A., Descatha, A., ... & Members of Occupational Health Services of the Pays de la Loire Region. (2009). Risk factors for upper‐extremity musculoskeletal disorders in the working population. Arthritis Care & Research, 61(10), 1425-1434. 18.Sementille, A., Escaramuzi Lourenço, L., Brega, J. R., & Rodello, I. (2004). A motion capture system using passive markers. 19.Sen, A., & Richardson, S. (2007). A study of computer-related upper limb discomfort and computer vision syndrome. Journal of human ergology, 36(2), 45-50. 20.Syahril, F., & Sonjaya, E. (2015). Validity, sensitivity, and relia⁃ bility testing by ergonomic evaluation methods for geothermal task. Paper presented at the Proceedings World Geothermal Congress. 21.Vander Linden, D. W., Carlson, S. J., & Hubbard, R. L. (1992). Reproducibility and accuracy of angle measurements obtained under static conditions with the Motion Analysis™ video system. Physical Therapy, 72(4), 300-305. 22.Walther, M., & Muñoz, B. T. (2012). Integration of time as a factor in ergonomic simulation. Work, 41(Supplement 1), 4372-4375. 23.Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 24.Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22.
|