|
Banks, J. (Ed.). (1998). Handbook of simulation: principles, methodology, advances, applications, and practice. John Wiley & Sons. Bassett, G. W., & Koenker, R. W. (1986). Strong consistency of regression quantiles and related empirical processes. Econometric Theory, 2(2), 191-201. Batur, D., & Choobineh, F. (2010). A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764-772. Bettonvil, B., & Kleijnen, J. P. (1997). Searching for important factors in simulation models with many factors: Sequential bifurcation. European Journal of Operational Research, 96(1), 180-194. Borror, C. M., Montgomery, D. C., & Myers, R. H. (2002). Evaluation of statistical designs for experiments involving noise variables. Journal of Quality Technology, 34(1), 54-70. Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475. Box, G. E., & Draper, N. R. (1959). A basis for the selection of a response surface design. Journal of the American Statistical Association, 54(287), 622-654. Box, G. E., & Draper, N. R. (1963). The choice of a second order rotatable design. Biometrika, 335-352. Brodin, E. (2007). Extreme value statistics and quantile estimation with applications in finance and insurance. Chalmers University of Technology. Chang, K. H. (2015). Improving the efficiency and efficacy of stochastic trust-region response-surface method for simulation optimization. IEEE Transactions on Automatic Control, 60(5), 1235-1243. Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)—A new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243. Cheng, R. C. (1997, December). Searching for important factors: Sequential bifurcation under uncertainty. In Proceedings of the 29th conference on Winter simulation (pp. 275-280). IEEE Computer Society. Conn, A. R., Gould, N. I., & Philippe, L. (2000). Toint. Trust-region methods, Society for Industrial and Applied Mathematics, Philadelphia, PA. Dette, H., & Trampisch, M. (2012). Optimal designs for quantile regression models. Journal of the American Statistical Association, 107(499), 1140-1151. Dielman, T., Lowry, C., & Pfaffenberger, R. (1994). A comparison of quantile estimators. Communications in Statistics-Simulation and Computation, 23(2), 355-371. Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and management science, 13, 575-616. Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215. Fu, M. C., & HILL, S. D. (1997). Optimization of discrete event systems via simultaneous perturbation stochastic approximation. IIE transactions, 29(3), 233-243. Gunst, R. F. (1996). Response surface methodology: process and product optimization using designed experiments. Harrell, F. E., & Davis, C. E. (1982). A new distribution-free quantile estimator. Biometrika, 69(3), 635-640. Hoke, A. T. (1974). Economical second-order designs based on irregular fractions of the 3 n factorial. Technometrics, 16(3), 375-384. Kleijnen, J. P. (2008). Design and analysis of simulation experiments. International series in operations research and management science. Kleijnen, J. P., Bettonvil, B., & Persson, F. (2003). Finding the important factors in large discrete-event simulation: sequential bifurcation and its applications. Kleijnen, J. P., Pierreval, H., & Zhang, J. (2011). Methodology for determining the acceptability of system designs in uncertain environments. European Journal of Operational Research, 209(2), 176-183. Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of statistical physics, 34(5-6), 975-986. Koenker, R., & Hallock, K. F. (2001). Quantile regression. Journal of economic perspectives, 15(4), 143-156. L'Ecuyer, P. (1994, December). Efficiency improvement and variance reduction. In Proceedings of the 26th conference on Winter simulation (pp. 122-132). Society for Computer Simulation International. Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software (TOMS), 7(1), 17-41. Neddermeijer, H. G., Van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000, December). A framework for response surface methodology for simulation optimization. In Proceedings of the 32nd conference on Winter simulation (pp. 129-136). Society for Computer Simulation International. Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004, December). Automated response surface methodology for stochastic optimization models with unknown variance. In Proceedings of the 36th conference on Winter simulation (pp. 491-499). Winter Simulation Conference. Robbins, H., & Monro, S. (1985). A stochastic approximation method. In Herbert Robbins Selected Papers (pp. 102-109). Springer, New York, NY. Roquemore, K. G. (1976). Hybrid designs for quadratic response surfaces. Technometrics, 18(4), 419-423. Staudte, R. G., & Sheather, S. J. (2011). Robust estimation and testing (Vol. 918). John Wiley & Sons. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: modeling and theory. Society for Industrial and Applied Mathematics. Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE transactions, 36(11), 1067-1081. Wan, H., Ankenman, B. E., & Nelson, B. L. (2006). Controlled sequential bifurcation: A new factor-screening method for discrete-event simulation. Operations Research, 54(4), 743-755. Wilcox, R. R., Erceg-Hurn, D. M., Clark, F., & Carlson, M. (2014). Comparing two independent groups via the lower and upper quantiles. Journal of Statistical Computation and Simulation, 84(7), 1543-1551. Zhang, T. F., Yang, J. F., & Lin, D. K. (2011). Small Box–Behnken design. Statistics & Probability Letters, 81(8), 1027-1033. 莊承霖. "分量最佳化之梯度搜尋架構." 清華大學工業工程與工程管理學系學位論文 (2014): 1-43. 呂盈暄. "運用有效篩選因子方法求解分量式模擬最佳化." 清華大學工業工程與工程管理學系學位論文 (2017): 1-57. |