|
1. Andersson, F., Mausser, H., Rosen, D., and Uryasev, S. (2001). Credit risk optimization with conditional value at risk criterion. Mathematical Programming, vol. 89, no.2, pp. 273–291. 2. Andrade, F. A., Esat, I., & Badi, M. N. M. (2001). A new approach to time-domain vibration condition monitoring: gear tooth fatigue crack detection and identification by the Kolmogorov–Smirnov test. Journal of Sound and vibration, 240(5), 909-919. 3. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, vol. 9, no. 3, pp. 203–228. 4. Avramidis, A.N., and Wilson, J. R. (1998). Correlation-induction techniques for estimating quantiles in simulation experiments. Operations Research, vol. 46, no. 4, pp. 574–591. 5. Basova, H. G., Rockafellar, R. T., and Royset, J. O. (2011). A computational study of the buffered failure probability in reliability-based design optimization. in Proceedings of the 11th Conference on Application of Statistics and Probability in Civil Engineering. 6. Chang, K. H. Simulation Optimization-based Vehicle Fleet Sizing of Automated Material Handling Systems in Semiconductor Manufacturing. Working Paper, Department of Industrial Engineering and Engineering Management, National Tsing Hua University. 7. Chen, C. H., & Lee, L. H. (2011). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific. 8. Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251-270. 9. Dahlgren, R., Liu, C. C., & Lawarree, J. (2003). Risk assessment in energy trading. IEEE Transactions on Power Systems, 18(2), 503-511. 10. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating value-at-risk. Management Science, vol. 46, no. 10, pp. 1349–1364. 11. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, vol. 12, no. 3, pp. 239–269. 12. Glynn, P. W. (1996). Importance sampling for Monte Carlo estimation of quantiles. in Proceedings of 1996 Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp. 180–185. 13. Greenwell, R. N., & Finch, S. J. (2004). Randomized rejection procedure for the two-sample Kolmogorov–Smirnov statistic. Computational statistics & data analysis, 46(2), 257-267. 14. Hesterberg, T. C., and Nelson, B. L. (1998). Control variates for probability and quantile estimation. Management Science, vol. 44, pp. 1295–1312. 15. Hong, L. J., and Liu, G. (2009). Simulating sensitivities of conditional value-at-risk. Management Science, vol. 55, no. 2, pp. 281–293. 16. Hong, L. J., Hu, Z., and Liu, G. (2014). Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modeling and Computer Simulation, vol. 24, no. 4, article no. 22. 17. Hsu, J. C., and Nelson, B. L. (1990). Control variates for quantile estimation. Management Science, vol. 36, pp. 835–851. 18. Iyengar, G., and Ma, A. K. C. (2013). Fast gradient descent method for mean-CVaR optimization. Annals of Operations Research, vol. 205, pp. 203–212. 19. Jorion, P. (1996). Risk2: Measuring the Risk in Value at Risk. Financial Analysts Journal, 47-56. 20. Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, vol. 4, no. 2, pp. 11–27. 21. Lamiri, M., Grimaud, F., & Xie, X. (2009). Optimization methods for a stochastic surgery planning problem. International Journal of Production Economics, 120(2), 400-410. 22. Luchi, F., & Krohling, R. A. (2015). Differential Evolution and Nelder-Mead for constrained non-linear integer optimization problems. Procedia Computer Science, 55, 668-677. 23. Mckay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, vol. 21, no. 2, pp. 239-245. 24. Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, vol. 7, no. 4, pp. 308–313. 25. Ogryczak, W., & Śliwiński, T. (2011). On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications, 50(3), 591-595. 26. Pflug, G. (2000). Some remarks on the value-at-risk and conditional value-at-risk. Probabilistic Constrained Optimization: Methodology and Applications, pp. 272–281. Springer US. 27. Rockafellar, R. T., and Royset, J. O. (2010). On buffered failure probability in design and optimization of structures. Reliability Engineering & System Safety, vol. 95, no. 5, pp. 499–510. 28. Rockafellar, R. T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, vol. 2, no. 3, pp. 21–41. 29. Sun, L., and Hong, L. J. (2010). Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Operations Research Letters, vol. 38, pp. 246–251. 30. Swann, W. H. (1972). Direct search methods. Numerical methods for unconstrained optimization, 13-28. 31. Tian, P., Wang, H., & Zhang, D. (1995). Nonlinear Integer Programming by Simulated Annealing. IFAC Proceedings Volumes, 28(10), 629-633. 32. Trindade, A. A., Uryasev, S., Shapiro, A., and Zrazhevsky, G. (2007). Financial prediction with constrained tail risk. Journal of Banking and Finance, vol. 31, pp. 3524–3538. 33. Zongrun, W., & Yanju, Z. (2006). Risk management in Supply Chain Based on Conditional Value at Risk Control: Modeling, Strategies and Case Study in China. In Management of Innovation and Technology, 2006 IEEE International Conference on (Vol. 2, pp. 699-702). IEEE. |