帳號:guest(3.147.81.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卓志諺
作者(外文):Cho, Chih-Yen
論文名稱(中文):二維佈局問題啟發式搜尋法之比較
論文名稱(外文):Comparisons of Heuristic Search Methods on Two-Dimension Layout Problems
指導教授(中文):洪一峯
指導教授(外文):Hung, Yi-Feng
口試委員(中文):吳建瑋
張國浩
口試委員(外文):Wu, Chien-Wei
Chang, Kuo-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034508
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:37
中文關鍵詞:二維佈局萬用演算法
外文關鍵詞:Two-dimension layoutmetaheuristic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:331
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
馬克排版是一個在傳統成衣產業生產流程中常見的二維佈局問題,主要是去
排列許多不規則的圖形或模板在一張二維矩形布料上,目的在於是否能快速排出
最節省布料的佈局,通常是固定矩形布料寬度下,最小化布料長度。此二維排版問題為一種組合最佳化的問題,一般而言,有兩個重要的決策需要考量,一是圖形能夠擺放的位置;二是圖形擺放的順序。這是非常困難的問題,因此必須使用啟發式方法來處理。本研究使用了兩種現有的排列圖形方法進行模擬實驗,第一種是建設性演算法(constructive algorithm, CA)和基因演算法(genetic algorithm, GA),由 Hifi 和 Hallah (2003)提出,是透過 CA 找出圖形可排的點位置,再利用 GA 模擬尋找圖形的排列順序。另一種方法則是利用 Kirkpatrick(1983)
所提出的模擬退火法(simulated annealing)取代原先的 GA 來做最佳路徑的搜尋。CA 主要是透過最小矩形包圍圖形的角點作為下一個欲排入圖形的參考位置
再。而 GA 和 SA 不同的地方在於,GA 是一種群集搜尋法,能透過本身運算子
找出最佳解;SA 亦是一種群集搜尋法,但會接受較差勁二維佈局解,進而避免
落入區域最佳解中。
In the traditional garment industry, marking is a common two-dimensional layout problem for arranging many irregular patterns or polygons on fabric. The objective of this problem is to minimize the use of the fabric or, commonly, minimize the fabric
length on rectangular fabric with a fixed width.
This problem is a combinatorial optimization in typology. In general, two essential decisions of the problem have to be considered. The first one is the locations where a polygon can be placed and the second one is the order in which polygons are placed. It is a very difficult problem and heuristic methods are necessary for this problem. This study tests and compares two heuristic methods. One is constructive approach and genetic algorithm (CAGA) proposed by Hifi and Hallah (2003), which includes CA for the locations of a considered polygon and GA for the order of the polygons. The other method replaces genetic algorithm with simulated annealing(SA) proposed by Kirkpatrick (1983), which also obtains the location of a polygon with CA but the order of the polygons with SA.
The purpose of CA is collecting the corner points of a minimized rectangle containing the considered polygon for reference point of next polygon. Both GA and SA are population search methods. The difference between GA and SA is that GA finds the optimal solution through bio-inspired operators, but SA would accept the worse
solution to escape local optimum.
目錄.............................................. I
圖目錄............................................ III
表目錄............................................ V
1. 緒論........................................... 1
1.1 研究背景...................................... 1
1.2 研究動機...................................... 2
1.3 問題描述及複雜度............................... 3
2. 文獻回顧....................................... 4
2.1 多邊形擺放位置................................. 4
2.1.1 CA(Constructive approach) .................. 4
2.1.2 NFP(No-fit polygon)......................... 4
2.2 多邊形擺放順序................................. 5
2.2.1 Initial sorting............................. 6
2.2.2 Local search ............................... 6
2.2.3 Simulated annealing......................... 7
2.2.4 Genetic algorithm........................... 8
3. 研究方法....................................... 10
3.1 計算圖形可擺放位置............................. 10
3.1.1 CA(Constructive approach) ................. 10
3.2 計算圖形順序編號............................... 11
3.2.1 計算圖形順序編號(GA) ........................ 11
3.2.2 計算圖形順序編號(SA)......................... 15
3.3 平行化 GA/SA.................................. 19
4. 實驗設計與結果.................................. 20
4.1 實驗問題產生................................... 20
4.2 實驗設計....................................... 20
4.3 實驗結果分析.................................... 21
5. 未來展望........................................ 25
Appendix A:部分排列結果 ........................... 26
參考文獻........................................... 35
Adamowicz, M., and Albano, A., (1972), “A two-stage solution of the cutting-stock problem”, Information Processing, Vol. 71, pp. 1086–1091.
Art, Jr., and Richard, C., (1966), “An approach to the two dimensional irregular cutting stock problem”, Thesis, Alfred P. Sloan School of Management, Massachusetts Institute of Technology.
Beasley, J. E., Bull, D. R., and Martin, R. R., (1993), “An overview of genetic algorithms: Part I fundamentals”, University, Computing, Vol. 15, pp. 170–181.
Bennell, J. A., and Song, X., (2008), “A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums”, Computers & Operations Research, Vol. 35, pp. 267-281.
Dean, H. T., Tu, Y., and Raffensperger, J. F., (2006), “An improved method for calculating the no-fit polygon”, Computers & Operations Research, Vol. 33, pp. 1521-1539.
Dyckhoff, H., (1990), “A typology of cutting and packing problems”, European Journal of Operational Research, Vol. 44, pp. 145–159.
Fekete, P. S., Schepers, J. V., (2007), “An exact algorithm for higher-dimensional orthogonal packing”, Operations Research, Vol. 55, No. 3, pp. 569-587.
Ghosh, P. K., (1991), “An Algebra of Polygons through the Notion of Negative Shapes”, CVGIP: Computer Vision and Image Understanding, Vol. 54, No. 2, pp. 119-44.
Heckmann, R., and Lengauer, T., (1995), “Computing Upper and Lower Bounds on Textile Nesting Problems”, European Journal of Operational Research, Vol. 108, No. 3, pp. 473-489.
Hifi, M., and Hallah, R. M. , (2003), “A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes”, International Transactions in Operational Research, Vol. 10, pp. 195-216.
Holland, J. H., (1975), “Adaptation in natural and artificial systems”, Michigan University Press, Ann Arbor, MI.
Hung, Y. F., Chen, W. C., and Chen, J. C. (2012), “Search Algorithms in the Selection of Warehouses and Transshipment Arrangements for High-End Low-Volume Products”, 先進工程學刊, Vol. 7, No. 2, pp. 51-60.
Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P., (1983), “Optimization by
simulated annealing”, Science, Vol. 200, No. 4598, pp. 671–680.
Lundy, M., and Mess, A., (1986), “Convergence of an annealing algorithm”, Mathematical Programming, Vol. 34, pp. 111-124.
Mahadevan, A., (1984), “Optimization in computer-aided pattern packing”, PhD thesis, North Carolina State University.
Martello, S., Monaci, M., and Vigo, D., (2003), “An exact approach to the strip-packing problem”, Informs Journal on Computing, Vol. 15, No. 3, pp. 310-319.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E., (1953), “Equation of state calculations by fast computing machines”, Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087–1092.
Oliveira, J. F., Gomes, A. M., and Ferreira, J. S., (2000). “TOPOS—A new constructive algorithm for nesting problems”, Operations Research-Spektrum, Vol. 22, pp. 263–284.
Ramesh Babu, A., and Ramesh Babu, N., (1999). “Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms”, International Journal of Production Research, Vol. 37, No. 7, pp. 1625-1643.
Stoyan, Y. G., and Yaskov G. N., (1998), “Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints”, International Transactions in Operational Research, Vol. 5, No. 1., pp. 45-57.
Vassilios, E. T., and James L. G., (1995), “The optimal packing of arbitrarily-shaped polygons using simulated annealing and polynomial-time cooling schedules”, Computer Methods in Applied Mechanics and Engineering, Vol. 125, pp.53-70.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *