|
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the institute of Statistical Mathematics, 21(1), 243-247. Alwan, L. C., & Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business & Economic Statistics, 6(1), 87-95. Aviv, Y. (2002). Gaining benefits from joint forecasting and replenishment processes: The case of auto-correlated demand. Manufacturing & Service Operations Management, 4(1), 55-74. Banks, J. (Ed.). (1998). Handbook of simulation: principles, methodology, advances, applications, and practice. John Wiley & Sons. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons. Broersen, P. M., & Wensink, H. E. (1993). On finite sample theory for autoregressive model order selection. IEEE Transactions on Signal Processing, 41(1), 196-204. Broersen, P. M., & Wensink, H. E. (1998). Autoregressive model order selection by a finite sample estimator for the Kullback-Leibler discrepancy. IEEE Transactions on Signal Processing, 46(7), 2058-2061. Cao, R., Febrerobande, M., González-Manteiga, W., Prada-Sánchez, J. M., & Garcfa-Jurado, I. (1997). Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. Communications in Statistics-Simulation and Computation, 26(3), 961-978. Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2016). Robust newsvendor problem with autoregressive demand. Computers & Operations Research, 68, 123-133. Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation (pp. 118-126). IEEE Computer Society. Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)—a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243. Cochran, W. G., & Cox, G. M. (1992). Experimental Designs (2nd Ed.). New York: Wiley. Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust region methods. Society for Industrial and Applied Mathematics. Cryer, J. D., & Chan, K. S. (2008). Time series analysis: with applications in R (2nd ed.). New York: Springer. Daley, D. J. (1968). The correlation structure of the output process of some single server queueing systems. The Annals of Mathematical Statistics, 39(3), 1007-1019. Del Castillo, E. (2007). Process optimization: a statistical approach (Vol. 105). Springer Science & Business Media. Farrokhrooz, M., & Karimi, M. (2005, June). Ship noise classification using probabilistic neural network and AR model coefficients. In Oceans 2005-Europe (Vol. 2, pp. 1107-1110). IEEE. Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215. Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and management science, 13, 575-616. Graves, S. C. (1999). A single-item inventory model for a nonstationary demand process. Manufacturing & Service Operations Management, 1(1), 50-61. Hsiao, C. (1981). Autoregressive modelling and money-income causality detection. Journal of Monetary economics, 7(1), 85-106. Karimi, M. (2007a). Finite sample AIC for autoregressive model order selection. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on (pp. 1219-1222). IEEE. Karimi, M. (2007b). Finite sample criteria for autoregressive model order selection, Iranian Journal of Science and Technology, Transaction B: Engineering 31(B3), 329–344. Kelton, W. D. (1997, December). Statistical analysis of simulation output. In Proceedings of the 29th conference on Winter simulation (pp. 23-30). IEEE Computer Society. Khorshidi, S., Karimi, M., & Nematollahi, A. R. (2011). New autoregressive (AR) order selection criteria based on the prediction error estimation. Signal Processing, 91(10), 2359-2370. Kleijnen, J. P. (1998). Experimental design for sensitivity analysis, optimization, and validation of simulation models. Handbook of simulation, 173-223. Law, A. M. (1983). Statistical analysis of simulation output data. Operations Research, 31(6), 983-1029. Law, A. M., Kelton, W. D., & Kelton, W. D. (1991). Simulation modeling and analysis (Vol. 2). New York: McGraw-Hill. Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626-643. Luong, H. T. (2007). Measure of bullwhip effect in supply chains with autoregressive demand process. European Journal of Operational Research, 180(3), 1086-1097. Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software (TOMS), 7(1), 17-41. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons. Neddermeijer, H. G., Piersma, N., van Oortmarssen, G., Habbema, D., & Dekker, R. (1999). Comparison of response surface methodology and the Nelder and Mead simplex method for optimization in microsimulation models (No. EI 9924-/A). Neddermeijer, H. G., Van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000, December). A framework for response surface methodology for simulation optimization. In Proceedings of the 32nd conference on Winter simulation (pp. 129-136). Society for Computer Simulation International. Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004, December). Automated response surface methodology for stochastic optimization models with unknown variance. In Simulation Conference, 2004. Proceedings of the 2004 Winter(Vol. 1). IEEE. Ramdane-Cherif, Z., Naït-Ali, A., Motsch, J. F., & Krebs, M. O. (2004). An autoregressive (AR) model applied to eye tremor movement, clinical application in schizophrenia. Journal of medical systems, 28(5), 489-495. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: modeling and theory. Society for Industrial and Applied Mathematics. Stine, R. A. (1987). Estimating properties of autoregressive forecasts. Journal of the American statistical association, 82(400), 1072-1078. Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE transactions, 36(11), 1067-1081. Thombs, L. A., & Schucany, W. R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, 85(410), 486-492. 潘浙楠, 席嘉澤, & 陳曉倩. (2009). 自我相關殘差管制圖模型選取之研究. 品質學報, 16(4), 245-260. |