帳號:guest(18.118.163.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊蕙宇
作者(外文):Yang, Hui-Yu
論文名稱(中文):考慮模擬實驗反應變數相關性 之模擬最佳化問題
論文名稱(外文):A STRONG-based Algorithm for Simulation Optimization with Correlated Outputs
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):洪一峯
吳建瑋
口試委員(外文):Hung, Yi-Feng
Wu, Chien-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034504
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:隨機系統實驗設計模擬最佳化反應曲面法
外文關鍵詞:Stochastic SystemExperimental DesignSimulation OptimizationResponse Surface Methodology
相關次數:
  • 推薦推薦:0
  • 點閱點閱:399
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨機最佳化係指在系統受隨機因子影響的情況下,找出最佳決策使系統有最好的表現,現今已有許多模擬最佳化演算法被提出以求解此類問題。過去,這些演算法皆是在假設模擬系統輸出是相互獨立的條件下發展而成的,然而,在現實中模擬輸出卻經常是彼此具有相關性的。在求解時,有時我們不希望所得到的實驗結果受到前面實驗結果干擾,且系統輸出之間若存在著相關性將會干擾輸入變數對系統帶來的真正影響。因此本研究基於在同一參數設定下連續蒐集得到之系統輸出具有自我相關性,且可視為一平穩序列的假設下,發展一自動化去相關流程,並結合STRONG演算法進行最佳化步驟,以排除相關性的干擾並得到最佳解,此演算法命名為STRONG–DP。
Simulation optimization has been widely used to solve stochastic optimization problems. The goal is to identify the system’s optimal parameter setting which leads to optimal performance. There have been many algorithms are proposed to solve the problems. In the past, the algorithms are developed under the assumption that outputs from a simulation system are independent. In reality, however, outputs are usually correlated with each other. Sometimes, when solving the optimization problem, we don’t want to be interfered by the previous experimental results. In addition, the effects on the system caused by input variables may be interfered by the correlation between outputs. In this study, under the assumptions that the consecutive outputs collected at the same parameter setting are autocorrelated and can be regarded as a stationary process, we propose an automated decorrelation procedure and combine with the STRONG algorithm to eliminate the correlation and get the optimal solution. The algorithm is called STRONG–DP.
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 4
2.1時間序列方法 4
2.1.1 時間序列模型 4
2.1.2 模型選取準則 6
2.1.3 時間序列之預測區間 7
2.2 模擬最佳化 9
2.2.1 STRONG演算法 11
第三章 問題定義 19
第四章 求解方法 21
4.1去除系統輸出之間相關性 22
4.1.1自迴歸模型 22
4.1.2 模型選擇 23
4.1.3 自動化去相關流程 24
4.2 結合STRONG演算法 29
4.2.1 演算法架構 30
4.2.2 結合STRONG之去相關流程 32
4.2.3 內迴圈中心點之去相關流程 33
第五章 數值實驗 35
5.1自動化去相關流程 35
5.1.1績效指標 35
5.1.2預測區間檢測法成果 36
5.1.3自動化去相關成果 37
5.2演算法比較 39
5.2.1測試函數 39
5.2.2績效指標 42
5.2.3數值結果 43
第六章 實證研究 49
第七章 結論與未來研究 51
參考文獻 52
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the institute of Statistical Mathematics, 21(1), 243-247.
Alwan, L. C., & Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business & Economic Statistics, 6(1), 87-95.
Aviv, Y. (2002). Gaining benefits from joint forecasting and replenishment processes: The case of auto-correlated demand. Manufacturing & Service Operations Management, 4(1), 55-74.
Banks, J. (Ed.). (1998). Handbook of simulation: principles, methodology, advances, applications, and practice. John Wiley & Sons.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Broersen, P. M., & Wensink, H. E. (1993). On finite sample theory for autoregressive model order selection. IEEE Transactions on Signal Processing, 41(1), 196-204.
Broersen, P. M., & Wensink, H. E. (1998). Autoregressive model order selection by a finite sample estimator for the Kullback-Leibler discrepancy. IEEE Transactions on Signal Processing, 46(7), 2058-2061.
Cao, R., Febrerobande, M., González-Manteiga, W., Prada-Sánchez, J. M., & Garcfa-Jurado, I. (1997). Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. Communications in Statistics-Simulation and Computation, 26(3), 961-978.
Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2016). Robust newsvendor problem with autoregressive demand. Computers & Operations Research, 68, 123-133.
Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation (pp. 118-126). IEEE Computer Society.
Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)—a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243.
Cochran, W. G., & Cox, G. M. (1992). Experimental Designs (2nd Ed.). New York: Wiley.
Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust region methods. Society for Industrial and Applied Mathematics.
Cryer, J. D., & Chan, K. S. (2008). Time series analysis: with applications in R (2nd ed.). New York: Springer.
Daley, D. J. (1968). The correlation structure of the output process of some single server queueing systems. The Annals of Mathematical Statistics, 39(3), 1007-1019.
Del Castillo, E. (2007). Process optimization: a statistical approach (Vol. 105). Springer Science & Business Media.
Farrokhrooz, M., & Karimi, M. (2005, June). Ship noise classification using probabilistic neural network and AR model coefficients. In Oceans 2005-Europe (Vol. 2, pp. 1107-1110). IEEE.
Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215.
Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and management science, 13, 575-616.
Graves, S. C. (1999). A single-item inventory model for a nonstationary demand process. Manufacturing & Service Operations Management, 1(1), 50-61.
Hsiao, C. (1981). Autoregressive modelling and money-income causality detection. Journal of Monetary economics, 7(1), 85-106.
Karimi, M. (2007a). Finite sample AIC for autoregressive model order selection. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on (pp. 1219-1222). IEEE.
Karimi, M. (2007b). Finite sample criteria for autoregressive model order selection, Iranian Journal of Science and Technology, Transaction B: Engineering 31(B3), 329–344.
Kelton, W. D. (1997, December). Statistical analysis of simulation output. In Proceedings of the 29th conference on Winter simulation (pp. 23-30). IEEE Computer Society.
Khorshidi, S., Karimi, M., & Nematollahi, A. R. (2011). New autoregressive (AR) order selection criteria based on the prediction error estimation. Signal Processing, 91(10), 2359-2370.
Kleijnen, J. P. (1998). Experimental design for sensitivity analysis, optimization, and validation of simulation models. Handbook of simulation, 173-223.
Law, A. M. (1983). Statistical analysis of simulation output data. Operations Research, 31(6), 983-1029.
Law, A. M., Kelton, W. D., & Kelton, W. D. (1991). Simulation modeling and analysis (Vol. 2). New York: McGraw-Hill.
Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626-643.
Luong, H. T. (2007). Measure of bullwhip effect in supply chains with autoregressive demand process. European Journal of Operational Research, 180(3), 1086-1097.
Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software (TOMS), 7(1), 17-41.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
Neddermeijer, H. G., Piersma, N., van Oortmarssen, G., Habbema, D., & Dekker, R. (1999). Comparison of response surface methodology and the Nelder and Mead simplex method for optimization in microsimulation models (No. EI 9924-/A).
Neddermeijer, H. G., Van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000, December). A framework for response surface methodology for simulation optimization. In Proceedings of the 32nd conference on Winter simulation (pp. 129-136). Society for Computer Simulation International.
Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004, December). Automated response surface methodology for stochastic optimization models with unknown variance. In Simulation Conference, 2004. Proceedings of the 2004 Winter(Vol. 1). IEEE.
Ramdane-Cherif, Z., Naït-Ali, A., Motsch, J. F., & Krebs, M. O. (2004). An autoregressive (AR) model applied to eye tremor movement, clinical application in schizophrenia. Journal of medical systems, 28(5), 489-495.
Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: modeling and theory. Society for Industrial and Applied Mathematics.
Stine, R. A. (1987). Estimating properties of autoregressive forecasts. Journal of the American statistical association, 82(400), 1072-1078.
Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE transactions, 36(11), 1067-1081.
Thombs, L. A., & Schucany, W. R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, 85(410), 486-492.
潘浙楠, 席嘉澤, & 陳曉倩. (2009). 自我相關殘差管制圖模型選取之研究. 品質學報, 16(4), 245-260.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *