帳號:guest(3.14.252.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃亭穎
作者(外文):Huang, Ting-Ying
論文名稱(中文):基於良率指標發展製程良率評估程序之研究
論文名稱(外文):Procedures of Process Yield Assessment Based on Yield Index
指導教授(中文):吳建瑋
指導教授(外文):Wu, Chien-Wei
口試委員(中文):蘇明鴻
張英仲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:105034501
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:91
中文關鍵詞:貝氏方法馬可夫鏈蒙地卡羅Box-Cox轉換涵蓋率相對偏誤
外文關鍵詞:Bayesian approachMarkov Chain Monte CarloBox-Cox transformationCoverage rateRelative bias
相關次數:
  • 推薦推薦:0
  • 點閱點閱:549
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
製程良率為普遍用於製造業以評估製程產出品質的標準,而製程能力指標(process capability indices, PCIs)為目前業界用來衡量製程產出績效的重要統計工具之一,其中Spk指標能對具雙邊規格之常態分配製程提供精確的良率衡量,其指標值與良率存在一對一的對應關係。然而,Spk指標估計式之求算及抽樣分配相當複雜,以致其精確的信賴區間亦難以求得。此外,在實務上有許多品質特性並非符合常態分配,使得Spk指標在實務應用上受到侷限。
為克服上述問題,本研究基於製程良率指標Spk提出一套通用的製程良率評估流程,探討內容主要分成兩部份,第一部分針對常態製程,以貝氏方法結合馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo, MCMC)建構Spk可信區間,並以涵蓋率及區間寬度評估MCMC所得可信區間之表現,模擬結果證實了MCMC能精確地估計製程良率,為良率估計提供另一種精確又可靠的選擇。而第二部份則針對非常態製程,將非常態資料透過Box-Cox轉換後估計Spk,並進一步分析各種非常態分配下指標估計值的相對偏誤(relative bias),將此相對偏誤彙整成修正表,供使用者進行後續修正以獲得更準確之估計。最後,本研究建構製程良率評估程序之圖形化使用者介面,針對常態與非常態製程之情境,各應用一個真實案例闡述製程良率分析流程,讓使用者能簡易地進行良率估計與製程能力評估。
Process yield is a standard numerical measure of process performance in manufacturing industry. Process capability indices, closely related to yield, are effective statistical tools for quality assurance. In particular, the yield index Spk can provide an exact measure on the process yield of normal process with two-sided specifications. However, the calculation and sampling distribution of the estimated Spk is mathematically intractable, making the exact confidence interval of Spk difficult to establish. Moreover, in practice, quality characteristic with non-normal distribution are also common, this will restrict the application of Spk.
To overcome the above problem, this paper provide procedures for assessing the process yield based on yield index Spk. For normal processes, we integrate the Markov Chain Monte Carlo (MCMC) technique into Bayesian approach for constructing the credible interval for Spk. The results show that MCMC can provide an accurate and reliable information on assessing the yield. For non-normal processes, we consider the Box-Cox transformation to estimate the yield index, and examine the performance of transformation by relative bias. We also tabulate the relative bias for further adjustment of yield. In addition, we develop a graphical user interface for assessing process yield easily based on Spk and also present two examples for normal and non-normal process to illustrate the applicability of the proposed procedure.
摘要 2
Abstract 3
目錄 4
圖目錄 6
表目錄 8
第一章 緒論 9
1.1 研究背景與動機 9
1.2 研究目的 11
1.3 研究架構 11
第二章 文獻回顧與探討 15
2.1 製程能力指標 15
2.2 製程良率指標之估計式與抽樣分配 18
2.3 製程良率指標之區間估計 20
2.3.1 複式抽樣法 21
2.3.2 廣義信賴區間法 23
2.4 貝氏方法 25
2.5 馬可夫鏈蒙地卡羅法 26
2.5.1 Metropolis-Hastings演算法 27
2.5.2 Gibbs抽樣法 28
2.5.3 適應性拒絕抽樣法 29
2.5.4 適應性拒絕Metropolis抽樣法 31
2.5.5 收斂性評估 34
2.6 Box-Cox轉換法 34
第三章 常態製程之製程良率分析 36
3.1 良率指標之貝氏區間估計 36
3.1.1 常態分配參數之事後機率分配 36
3.1.2 以馬可夫鏈蒙地卡羅法建構可信區間 39
3.2 數值模擬分析與比較 40
3.3 案例分析 48
第四章 非常態製程之製程良率分析 53
4.1 非常態製程與良率指標 53
4.2 非常態製程之良率估計值修正與調整 60
4.3 案例分析 68
第五章 結論與未來研究方向 75
5.1 結論 75
5.2 未來研究方向 76
參考文獻 78
附錄A 82
1. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory: IOP Publishing.
2. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252.
3. Box, G. E., & Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis (Vol. 40): John Wiley & Sons.
4. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
5. Boyles, R. A. (1994). Process capability with asymmetric tolerances. Communications in Statistics - Simulation and Computation, 23(3), 615-635. doi: 10.1080/03610919408813190
6. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455.
7. Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174.
8. Chan, L., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
9. Chen, J. P. (2005). Comparing four lower confidence limits for process yield index Spk. The International Journal of Advanced Manufacturing Technology, 26(5), 609-614. doi: 10.1007/s00170-004-2351-9
10. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE Transactions, 21(1), 97-98.
11. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904.
12. Efron, B. (1993). Bootstrap methods: another look at the jackknife. Breakthroughs in Statistics (pp. 569-593): Springer.
13. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
14. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.
15. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457-472.
16. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence(6), 721-741.
17. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472.
18. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov Chain Monte Carlo in Practice: CRC press.
19. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 337-348.
20. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
21. Hsu, Y. C., Pearn, W., & Wu, P.-C. (2008). Capability adjustment for gamma processes with mean shift consideration in implementing six sigma program. European Journal of Operational Research, 191(2), 517-529.
22. Jeffreys, H. (1998). The Theory of Probability: OUP Oxford.
23. Juran, J. M. (1974). Basic concepts. Quality Control Handbook, 2.
24. Juran, J. M., & Gryna, F. M. (1993). Quality Planning and Analysis; from product development through use.
25. Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo Methods: John Wiley & Sons (New York).
26. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
27. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
28. Lee, J. C., Hung, H. N., Pearn, W. L., & Kueng, T. L. (2002). On the distribution of the estimated process yield index Spk. Quality and Reliability Engineering International, 18(2), 111-116. doi: 10.1002/qre.450
29. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957.
30. Müller, P. (1991). A Generic Approach to Posterior Integration and Gibbs Sampling: Purdue University, Department of Statistics.
31. Mathew, T., Sebastian, G., & Kurian, K. (2007). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4), 471-481.
32. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
33. Montgomery, D. C. (1985). Introduction to Statistical Quality Control: John Wiley & Sons (New York).
34. Pearn, W. L., & Chuang, C. C. (2004). Accuracy analysis of the estimated process yield based on Spk. Quality and Reliability Engineering International, 20(4), 305-316.
35. Pearn, W. L., Lin, G., & Wang, K. (2004). Normal approximation to the distribution of the estimated yield index S pk. Quality & Quantity, 38(1), 95-111.
36. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and Methods, 27(4), 985-1000.
37. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on bayesian approach. Metrika, 61(2), 221-234.
38. Roberts, G. O., & Smith, A. F. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications, 49(2), 207-216.
39. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378.
40. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316.
41. Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, 1701-1728.
42. Tsui, K. W., & Weerahandi, S. (1989). Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association, 84(406), 602-607.
43. Weerahandi, S. (1995). Generalized confidence intervals. Exact Statistical Methods for Data Analysis (pp. 143-168): Springer.
44. Wu, C. W. (2008). Assessing process capability based on Bayesian approach with subsamples. European Journal of Operational Research, 184(1), 207-228.
45. Wu, C. W., Pearn, W. L., Chang, C., & Chen, H. (2007). Accuracy analysis of the percentile method for estimating non normal manufacturing quality. Communications in Statistics—Simulation and Computation®, 36(3), 657-697.
46. Wu, C. W., Liao, M. Y., & Chen, J. C. (2012). An improved approach for constructing lower confidence bound on process yield. European Journal of Industrial Engineering, 6(3), 369-390.
47. Yang, R., & Berger, J. O. (1996). A Catalog of Noninformative Priors: Institute of Statistics and Decision Sciences, Duke University.
48. Zellner, A., & Min, C. K. (1995). Gibbs sampler convergence criteria. Journal of the American Statistical Association, 90(431), 921-927.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *