|
1. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory: IOP Publishing. 2. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252. 3. Box, G. E., & Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis (Vol. 40): John Wiley & Sons. 4. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26. 5. Boyles, R. A. (1994). Process capability with asymmetric tolerances. Communications in Statistics - Simulation and Computation, 23(3), 615-635. doi: 10.1080/03610919408813190 6. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455. 7. Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174. 8. Chan, L., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175. 9. Chen, J. P. (2005). Comparing four lower confidence limits for process yield index Spk. The International Journal of Advanced Manufacturing Technology, 26(5), 609-614. doi: 10.1007/s00170-004-2351-9 10. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE Transactions, 21(1), 97-98. 11. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904. 12. Efron, B. (1993). Bootstrap methods: another look at the jackknife. Breakthroughs in Statistics (pp. 569-593): Springer. 13. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75. 14. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409. 15. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457-472. 16. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence(6), 721-741. 17. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472. 18. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov Chain Monte Carlo in Practice: CRC press. 19. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 337-348. 20. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109. 21. Hsu, Y. C., Pearn, W., & Wu, P.-C. (2008). Capability adjustment for gamma processes with mean shift consideration in implementing six sigma program. European Journal of Operational Research, 191(2), 517-529. 22. Jeffreys, H. (1998). The Theory of Probability: OUP Oxford. 23. Juran, J. M. (1974). Basic concepts. Quality Control Handbook, 2. 24. Juran, J. M., & Gryna, F. M. (1993). Quality Planning and Analysis; from product development through use. 25. Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo Methods: John Wiley & Sons (New York). 26. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52. 27. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370. 28. Lee, J. C., Hung, H. N., Pearn, W. L., & Kueng, T. L. (2002). On the distribution of the estimated process yield index Spk. Quality and Reliability Engineering International, 18(2), 111-116. doi: 10.1002/qre.450 29. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957. 30. Müller, P. (1991). A Generic Approach to Posterior Integration and Gibbs Sampling: Purdue University, Department of Statistics. 31. Mathew, T., Sebastian, G., & Kurian, K. (2007). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4), 471-481. 32. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092. 33. Montgomery, D. C. (1985). Introduction to Statistical Quality Control: John Wiley & Sons (New York). 34. Pearn, W. L., & Chuang, C. C. (2004). Accuracy analysis of the estimated process yield based on Spk. Quality and Reliability Engineering International, 20(4), 305-316. 35. Pearn, W. L., Lin, G., & Wang, K. (2004). Normal approximation to the distribution of the estimated yield index S pk. Quality & Quantity, 38(1), 95-111. 36. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and Methods, 27(4), 985-1000. 37. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on bayesian approach. Metrika, 61(2), 221-234. 38. Roberts, G. O., & Smith, A. F. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications, 49(2), 207-216. 39. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378. 40. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316. 41. Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, 1701-1728. 42. Tsui, K. W., & Weerahandi, S. (1989). Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association, 84(406), 602-607. 43. Weerahandi, S. (1995). Generalized confidence intervals. Exact Statistical Methods for Data Analysis (pp. 143-168): Springer. 44. Wu, C. W. (2008). Assessing process capability based on Bayesian approach with subsamples. European Journal of Operational Research, 184(1), 207-228. 45. Wu, C. W., Pearn, W. L., Chang, C., & Chen, H. (2007). Accuracy analysis of the percentile method for estimating non normal manufacturing quality. Communications in Statistics—Simulation and Computation®, 36(3), 657-697. 46. Wu, C. W., Liao, M. Y., & Chen, J. C. (2012). An improved approach for constructing lower confidence bound on process yield. European Journal of Industrial Engineering, 6(3), 369-390. 47. Yang, R., & Berger, J. O. (1996). A Catalog of Noninformative Priors: Institute of Statistics and Decision Sciences, Duke University. 48. Zellner, A., & Min, C. K. (1995). Gibbs sampler convergence criteria. Journal of the American Statistical Association, 90(431), 921-927.
|