帳號:guest(18.191.132.26)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):維洛
作者(外文):Novotny, Vaclav
論文名稱(中文):鹽溶液低溫應用吸收式能源循環
論文名稱(外文):Absorption power cycle with aqueous salt solution for low temperature heat utilization
指導教授(中文):蔡宏營
Kolovratnik, Michal
指導教授(外文):Tsai, Hung-Yin
Kolovratnik, Michal
口試委員(中文):Hoznedl, Michal
林昭安
劉通敏
Vlcek, Zdenek
Safarik, Pavel
Dostal, Vaclav
Hrdlicka, Frantisek
Dlouhy, Tomas
口試委員(外文):Hoznedl, Michal
Lin, Chao-An
Liou, Tong-Miin
Vlcek, Zdenek
Safarik, Pavel
Dostal, Vaclav
Hrdlicka, Frantisek
Dlouhy, Tomas
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033891
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:302
中文關鍵詞:吸收式製冷卡林那循環吸收式動力循環低溫廢熱回收實驗溫度驟降LiBr概念驗證膨脹機3d列印
外文關鍵詞:Absorption chillerKalina cycleabsorption power cyclelow temperaturewaste heat recoveryexperimentaltemperature glideLiBrproof of conceptexpanderadditive manufacturing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
吸收式循環不僅被提用於冷卻,也被提用於發電,例如利用水氨混合液當工作流體的Kalina循環。這些吸收式能源循環(APC)的優點之一是,多重組合的混合工作流體可以藉由相變時的溫度變化(溫度滑落)在熱交換器中提供較低熵的產生(entropy production),從而達到比恆溫相變的熱力循環擁有更高的效率。然而,除了水-氨之外,其他工作流體的使用已被主流研究所忽視。具體來說,本工作提出使用水鹽溶液,如吸收式製冷機中的溴化鋰(LiBr)。
基於夾點分析的綜合理論調查顯示,鹽APC在低溫應用中(低於120°C)的最大好處,主要是餘熱回收(WHR)。將朗肯循環、水-氨APC及有機朗肯循環(ORC)進行了比較,有一系列的工作液體和配置(蓄熱、亞/跨臨界)。 APC的第二種應用被研究為聯合動力和冷卻系統,其中鹽溶液可以帶來對一些水氨系統的簡化。對於給定的低溫系統,在相同的配置和帶有蒸汽壓縮冷卻器的基準ORC下,它再次優於水-氨。該分析包括用於熱排斥的寄生負載,如風扇和泵。在低溫系統中,這些負載的額定功率與膨脹機的輸出功率相似。在這項工作中探討的配置故意相當簡單,以便它們在技術上是可行的。鹽基APC還具有環境效益,因為工作液體中使用的鹽是無毒的。
根據文獻回顧,還沒有關於鹽溶液APC運行的報導。因此,這項工作也開始了一項實驗任務,以驗證技術可行性。世界上第一個溴化鋰(LiBr)溶液APC概念驗證裝置已被設計和建造,其額定熱輸入20千瓦,功率輸出低於千瓦。實驗工作指出了設計中與理論模型假設有關的具體方面。測量了相變過程中的溫度滑移,它在解吸器(蒸汽發生器)中明顯低於理論值。在吸收器中,需要對溶液進行明顯的過冷處理,吸收率比預測的要低。另一方面,解吸器的傳熱比預測的要高,由於沸點升高,從溶液中分離出來的蒸汽自然過熱。
然後,實驗工作的具體部分集中在渦輪擴張器的開發上。由於蒸汽在APC中處於低壓狀態(真空,通常在渦輪機入口處為幾十千帕),體積流量大,渦輪機是合適的膨脹機選擇。低溫進一步建議使用聚合物材料和增材製造。與作為發電機的永磁電機一起,這個概念被提出,並被證明是小型渦輪膨脹機的一個成本效益的解決方案。首先,開發和測試了幾種配置的空氣渦輪機。隨後,一個由尼龍製成的轉子和定子流動部件的渦輪機被用於APC單元。它作為一個概念驗證系統,而進一步的工程開發可以提高APC或聯合動力和冷卻系統的應用性能。
在整個工作中,確實強調了設計系統簡單性的必要性。稍微好一點的理論性能往往不值得增加複雜性。總體結果概述了LiBr APC在餘熱回收方面的實際應用可能性(相當有限)。然而,擬議的聯合動力和冷卻系統可以在很大程度上幫助LiBr冷風機的普及,為它們提供更好的容量係數,利用目前不經濟的低溫熱量,並節省初級資源。
Absorption cycles have been proposed not only for cooling but also for power generation, such as well-known Kalina cycle utilizing water-ammonia mixture working fluid. Among advantages of this these absorption power cycles (APC) is that the multicomponent mixture working fluid can provide low exergy destruction in heat exchangers through variable temperature during phase change (temperature glide), thus achieve higher efficiency than thermodynamic cycles with constant temperature phase change. Use of other working fluids than water-ammonia has however stood aside of mainstream research. Specifically, using aqueous salt solutions, such as LiBr found in absorption chillers, is proposed in this work.
A comprehensive theoretical investigation based on pinch point analysis has shown the largest benefits of salt APC in low temperature applications (below about 120°C), mainly for waste heat recovery (WHR). The comparison has been performed with a steam Rankine cycle, a water-ammonia APC, and organic Rankine cycles (ORC) with a range of working fluids and configurations (recuperation, sub/trans-critical). Second application of APC was investigated as a combined power and cooling system, where salt solutions can bring a simplification against some water ammonia systems. For given low temperature system, again, it outperforms water-ammonia under same configuration and benchmark ORC with vapour compression chiller. The analyses include a parasitic load for heat rejection such as fans and pumps. These can have a similar power rating as the expander output at low temperature systems. Configurations explored in this work are purposefully rather simple, so that they are technically feasible. The salt-based APCs also carry environmental benefits, as the salts utilized in the working fluids are non-toxic.
According to the literature review, operation of no salt solution APC has ever been reported. Therefore, this work embarks also on an experimental task to validate technical feasibility. World’s first LiBr solution APC proof-of-concept unit has been designed and built with 20 kW nominal thermal input and sub-kW power output. The experimental works point out at specific aspects of the design with respect to the theoretical models’ assumptions. Temperature glide during phase change has been measured and it is in desorber (vapour generator) significantly lower, than theoretical one. In the absorber, significant subcooling of the solution is required and absorption rate is lower than predicted. On the other hand, desorber heat transfer is higher than predicted and steam separated from the solution is naturally superheated due to boiling point elevation.
Specific part of the experimental work is then focused on turboexpander development. As the vapour is at low pressure in the APC (vacuum, typically several to dozens kPa at turbine inlet) with high volumetric flowrate, turbines are the suitable expander choice. Low temperatures further suggested use of polymer materials and additive manufacturing. Together with permanent magnet motor as a generator, this concept was proposed and shown as a cost effective solution for small turboexpanders. First, several configurations of air turbines were developed and tested. Following, a turbine with rotor and stator flow components made of nylon by powder bed fusion has been used for the APC unit. It serves as a proof of concept system, while further engineering development can improve the performance for applications in APC or combined power and cooling systems.
Need for simplicity of designed system is indeed stressed throughout the work. Slightly better theoretical performance is often practically not worth of added complexity. The overall results outline possibilities of (rather limited) actual applicability of the LiBr APC for waste heat recovery. Proposed combined power and cooling system can, however, largely help for the widespread of LiBr chillers, provide for them better capacity factor, utilize currently uneconomical low temperature heat and save primary resources.
Contents
Abstract (Chinese) I
Abstract III
Acknowledgements V
Contents VIII
List of Figures XIV
List of Tables XXV
1 Introduction 1
1.1 Current energy engineering and author’s research . . . . . . . . . . 1
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Low temperature waste heat recovery . . . . . . . . . . . . . . . . . 4
2 Absorption power cycles 9
2.1 Absorption power cycle concept . . . . . . . . . . . . . . . . . . . . 9
2.2 Review of APC with various working fluids . . . . . . . . . . . . . . 11
2.2.1 Water-ammonia absorption power cycles . . . . . . . . . . . 11
2.2.2 Salt-water absorption power cycles . . . . . . . . . . . . . . 13
2.2.3 Other absorption power cycles working fluids . . . . . . . . . 16
2.3 Review of absorption power and cooling combined cycles . . . . . . 17
2.3.1 Separate thermodynamic cycles coupled by heat . . . . . . . 18
2.3.2 Separate thermodynamic cycles coupled by work . . . . . . . 20
2.3.3 Single-branch Thermodynamic Cycle for Both Power and Thermally Activated Cooling . . . . . . . . . . . . . . . . . 22
2.3.4 Branched Thermodynamic Cycle for Power or Thermally Activated Cooling . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Prospects For for Aqueous Salt Solution Systems . . . . . . 24
2.4 Working fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Water-ammonia . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Water-salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Ionic liquids – refrigerants, alcohol mixtures and other . . . 29
2.5 Experimental and commercial APC . . . . . . . . . . . . . . . . . . 31
2.6 Summary of the APC review . . . . . . . . . . . . . . . . . . . . . . 34
3 Review of prospective components design 39
3.1 Absorber / Desorber . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1 Falling Film Absorbers . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Adiabatic Absorbers . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Bubble Absorbers . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.4 Flat plate desorbers . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Membrane absorber and desorber . . . . . . . . . . . . . . . 45
3.2 Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Review of micro-expanders and additive manufacturing technologies 50
4.1 Expander type consideration . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Additive manufacturing methods for turbomachinery . . . . . . . . 53
4.2.1 Stereolithography . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Fused Deposition Modelling . . . . . . . . . . . . . . . . . . 56
4.2.3 Selective Laser Sintering . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Direct Metal Laser Sintering . . . . . . . . . . . . . . . . . . 58
4.2.5 Post-processing of AM components . . . . . . . . . . . . . . 58
5 Goals of the thesis 61
6 Theoretical cycle investigations 64
6.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.1 Cycle configurations . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Thermodynamic models . . . . . . . . . . . . . . . . . . . . 70
6.1.3 Calculation methods . . . . . . . . . . . . . . . . . . . . . . 71
6.1.4 General input parameters and boundary conditions . . . . . 74
6.1.5 Additional models . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Performance indicators . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Power cycle results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.1 Thermodynamic limits and ideal cycles . . . . . . . . . . . . 83
6.3.2 Comparison with previous works and model validation . . . 88
6.3.3 Detailed parameters of the cycles . . . . . . . . . . . . . . . 89
6.3.4 Heat source utilization general analysis . . . . . . . . . . . . 92
6.3.5 Comparison with other APC, ORC zeotropic fluids and transcritical ORC . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.6 APC performance sensitivity analysis . . . . . . . . . . . . . 103
6.3.7 Case study 1 - low temperature solar system . . . . . . . . . 105
6.3.8 Case study 2 – bottoming cycle to ORC . . . . . . . . . . . 113
6.3.9 Case study 3 – waste heat utilization in CCS systems . . . . 114
6.3.10 Discussion and summary and of the power cycle theoretical investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Combined absorption power and cooling cycle . . . . . . . . . . . . 120
6.4.1 Baseline APCC and comparison with VCC-ORC . . . . . . . 121
6.4.2 Sensitivity analysis of APCC and ORC-VCC cycle parameters122
6.4.3 Sensitivity analysis of utilization parameters . . . . . . . . . 125
6.4.4 Comparison of working fluids for APCC . . . . . . . . . . . 127
6.4.5 Comparison of APCC with APC for waste heat recovery . . 129
6.4.6 Summary of combined power and cooling cycle . . . . . . . . 131
7 Experimental development of the absorption power system 133
7.1 Configuration and design of the 1st testrig . . . . . . . . . . . . . . 134
7.1.1 Overall concept . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.1.2 Design of components and resulting system . . . . . . . . . . 137
7.2 Configuration and design of the proof of concept APC unit (2nd testrig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.1 Overall concept . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.2 Design of components . . . . . . . . . . . . . . . . . . . . . 141
7.2.3 Resulting system . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3 Commissioning and operation of the experimental rigs . . . . . . . . 152
7.3.1 1st testrig . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.2 2nd testrig . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.4 Data Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 157
7.4.1 Working fluid mass flow rate issue . . . . . . . . . . . . . . . 157
7.4.2 Cycle parameters and potential . . . . . . . . . . . . . . . . 159
7.4.3 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . 160
7.5 Experimental Results and Discussion . . . . . . . . . . . . . . . . . 161
7.5.1 Cycle parameters . . . . . . . . . . . . . . . . . . . . . . . . 161
7.5.2 Temperature glide measurements . . . . . . . . . . . . . . . 163
7.5.3 Comparison with the design models . . . . . . . . . . . . . . 166
7.6 Summary of APC experimental development . . . . . . . . . . . . . 170
8 Experimental development of expanders 172
8.1 Turboexpander concept . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2 Turbine design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2.1 Axial air turbines’ design . . . . . . . . . . . . . . . . . . . . 175
8.2.2 Radial cantilever air expander design . . . . . . . . . . . . . 180
8.2.3 APC expander design . . . . . . . . . . . . . . . . . . . . . . 183
8.3 Testing and evaluation methods . . . . . . . . . . . . . . . . . . . . 185
8.3.1 Air expander test-rigs . . . . . . . . . . . . . . . . . . . . . 186
8.3.2 APC turbine test-rig . . . . . . . . . . . . . . . . . . . . . . 188
8.3.3 Data processing and performance evaluation . . . . . . . . . 189
8.4 Expander performance results . . . . . . . . . . . . . . . . . . . . . 190
8.4.1 Axial air expanders results . . . . . . . . . . . . . . . . . . . 191
8.4.2 Radial cantilever expander results . . . . . . . . . . . . . . . 195
8.4.3 APC demonstrator expander results . . . . . . . . . . . . . . 197
8.5 Summary of turbo-expander development . . . . . . . . . . . . . . . 199
9 Conclusion 202
Bibliography 211
Author’s publications related to the thesis 244
Nomenclature 248
A Details of numerical APC heat exchangers calculation 257
B Solar and collector models and their coupling to cycle models 259
B.1 Solar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
B.2 Collector model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.3 Collector efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.4 Models interconnection . . . . . . . . . . . . . . . . . . . . . . . . . 262
C Detailed results of APC comparison with alternatives to low temperature heat source 265
D Detailed results of APCC and its benchmark systems 272
E APC 1st test rig design details 278
F APC proof of concept unit (2nd testrig) design details 283
G Experimental APC results – charts with full uncertainty error bars 287
H Axial turbine design 294
H.1 Axial air turbine model . . . . . . . . . . . . . . . . . . . . . . . . . 294
H.2 Sensitivity analysis of axial air turbine parameters . . . . . . . . . . 298
H.3 Alternative correlations used in APC turbine . . . . . . . . . . . . . 298
I Isentropic efficiency evaluation method for air turbines 300
Author's
[VN1] V. Novotny, M. Kolovratnik, Absorption power cycles for lowtemperature heat sources using aqueous salt solutions as working fluids, International Journal of Energy Research 41 (7) (2017) 952-975. doi: 10.1002/er.3671.
[VN2] V. Novotny, M. Vitvarova, M. Kolovratnik, Absorption power cycles with various working fluids for exergy-efficient low-temperature waste heat recovery, in: S. Nižetić, A. Papadopoulos (Eds.), The Role of Exergy in Energy and the Environment, Springer, Cham, 2018, Ch. Energy Sys, pp. 99-111. doi:10.1007/978-3-319-89845-2_8.
[VN3] V. Novotny, V. Vodicka, J. Mascuch, M. Kolovratnik, Possibilities of water-lithium bromide absorption power cycles for low temperature, low power and combined power and cooling systems, Energy Procedia 129 (September) (2017) 818-825. doi:10.1016/ J.EGYPRO.2017.09.104.
[VN4] V. Novotny, M. Vitvarova, M. Kolovratnik, Z. Hrdina, Minimizing the Energy and Economic Penalty of CCS Power Plants Through Waste Heat Recovery Systems, Energy Procedia 108 (2017) 10-17. doi:10.1016/j.egypro.2016.12.184.
[VN5] V. Novotny, D. Szucs, M. Kolovratnik, T. Matuska, Simulation of absorption power cycle and organic Rankine cycle using evacuated tube solar collectors., IIR Rankine Conference 2020. 2020-July (2020) 600-607. doi:10.18462/IIR.RANKINE. 2020.1227.
[VN6] V. Novotny, D. J. Szucs, J. Špale, H.-Y. Tsai, M. Kolovratnik, Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration, Energies 2021, Vol. 14, Page 3715 14 (12) (2021) 3715 . doi: 10.3390 / EN 14123715 .
[VN7] V. Novotny, D. Szűcs, M. Kolovratnik, T. Matuska, Simulation of solar collectors with two low temperature heat engines for buildings applications, in: 10th International Conference on System Simulation in Buildings, University of Liege, Liege, 2018 .
[VN8] V. Novotný, M. Vitvarová, J. P. Jakobsen, M. Kolovratník, Analysis and Design of Novel Absorption Power Cycle Plants, in: ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, Vol. 1, American Society of Mechanical Engineers, ASME, Charlotte, 2016, p. V001T13A005, doi:10.1115/ES2016-59272.
[VN9] V. Novotny, J. Mascuch, H.-Y. Tsai, M. Kolovratnik, Design of Experimental Rig for Validation of Absorption Power Cycle Concept, Energy Procedia 105 (2017) 4990-4996. doi: 10.1016/j jegypro.2017.03.998.
[VN10] V. Novotny, D. Suchna, M. Kolovratnik, Experimental rig for LiBrwater absorption power cycle - Design and first experimental results, in: AIP Conference Proceedings, Vol. 2047, 2018, p. 020013. doi: 10.1063 / 1.5081646 .
[VN11] V. Novotný, D. J. Szucs, J. Spale, V. Vodicka, J. Mascuch, M. Kolovratník, Absorption power cycle with LiBr solution working fluid-design of the proof-of-concept unit, in: 5 th International Seminar on ORC Power Systems, Athens, 2019 .URL https://www.orc2019.com/online/proceedings/documents/ 61.pdf
[VN12] J. Spale, V. Novotny, V. Mares, A. P. Weiß, 3D printed radial impulse cantilever micro-turboexpander for preliminary air testing, in: AIP Conference Proceedings, Vol. 2323, AIP Publishing LLC AIP Publishing, Pilsen, Czechia, 2021, p. 070002. doi:10.1063/ 5.0041433 .
[VN13] V. Novotny, J. Spale, D. Suchna, J. Pavlicko, M. Kolovratnik, A. P. Weiß, Absorption power cycle with a. 3D-printed plastic micro turboexpander - Considerations, design and first experimental results, in: AIP Conference Proceedings, Vol. 2323, American Institute of Physics Inc., 2021, p. 070003. doi: 10.1063/5.0041429.
[VN14] V. Novotny, J. Spale, J. Pavlicko, M. Kolovratnik, Experimental investigation of a kw scale absorption power cycle with libr solution, in: T. U. of Munich (Ed.), Proceedings of the 6th International Seminar on ORC Power Systems, Technical University of Munich, Technical University of Munich, 2021. doi: 10.14459/2021mp1632900.
[VN15] V. Novotny, J. Spale, J. Pavlicko, J. Novotny, D. J. Szucs, M. Kolovratnik, Experience from the operation of an absorption power cycle with LiBr working fluid and its prospects for future, in: Heat Powered Cycles 2021, Bilbao, Spain, 2022, p. (accepted manuscript).
[VN16] V. Novotny, J. Spale, B. B. Stunova, M. Kolovratnik, M. Vitvarova, P. Zikmund, 3D Printing in Turbomachinery: Overview of Technologies, Applications and Possibilities for Industry 4.0, in: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Vol. 6, ASME International, Phoenix, 2019, p. V006T24A021. doi:10.1115/gt2019-91849.
[VN17] A. P. Weiß, V. Novotný, T. Popp, P. Streit, J. Špale, G. Zinn, M. Kolovratník, Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing, Energy 209 (2020) 118407. doi:10.1016/ j.energy.2020.118407.
[VN18] J. Spale, V. Novotny, J. Novotny, A. P. Weiß, M. Kolovratnik, Experimental Development of Additively Manufactured Turboexpanders towards an Application in the ORC, in: Heat Powered Cycles 2021, Bilbao, Spain, 2022, p. (accepted manuscrit).
[VN19] V. Novotny, M. Vitvarova, M. Kolovratnik, B. B. Stunova, V. Vodicka, J. Spale, P. Zikmund, M. Drasnar, E. Schastlivtseva, Design and Manufacturing of a Metal 3D Printed \mathrm{kW} Scale Axial Turboexpander, in: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Vol. 8, ASME International, Phoenix, 2019 , p. V008T26A023. doi:10.1115/gt2019-91822.

Other:
[1] M. Son, V. Novotny, H. Choi, Thin-film nanocomposite membrane with vertically embedded carbon nanotube for forward osmosis, Desalination and Water Treatment 57 (55) (2016) 26670-26679. doi:10.1080/ 19443994.2016.1190110.
[2] V. Novotný, J. Maščuch, Model of small family house with micro cogeneration unit, Vytapeni, Vetrani, Instalace 25 (1) (2016).
[3] J. Mascuch, V. Novotny, M. Tobias, Economic aspects of micro-cogeneration systems - Insight into investors' approaches, in: 2018 Smart City Symposium Prague (SCSP), IEEE, Prague, 2018, pp. 1-5. doi:10.1109/ SCSP. 2018.8402654.
[4] J. Mascuch, V. Novotny, V. Vodicka, Z. Zeleny, Towards development of 1-10 \mathrm{~kW} pilot ORC units operating with hexamethyldisiloxane and using rotary vane expander, Energy Procedia 129 (2017) 826-833. doi: 10.1016 / j.egypro.2017.09.196.
[5] J. Mascuch, V. Novotny, J. Spale, V. Vodicka, Z. Zeleny, Experience from set-up and pilot operation of an in-house developed biomass-fired ORC microcogeneration unit, Renewable Energy 165 (2021) 251-260. doi : 10.1016 / j.renene.2020.11.021.
[6] J. Mascuch, V. Novotny, V. Vodicka, J. Spale, Z. Zeleny, Experimental development of a kilowatt-scale biomass fired micro - CHP unit based on ORC with rotary vane expander, Renewable Energy 2882-2895doi: 10.1016/j.renene.2018.08.113.
[7] V. Vodicka, V. Novotny, Z. Zeleny, J. Mascuch, M. Kolovratnik, Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander, Energy 189 (2019) 116097. doi: 10.1016 / J.ENERGY.2019.116097.
[8] V. Vodicka, V. Novotny, J. Mascuch, M. Kolovratnik, Impact of major leakages on characteristics of a rotary vane expander for ORC, Energy Procedia 129 (2017) 387-394. doi : 10.1016/j.egypro.2017.09.249.
[9] V. Novotny, J. Spale, D. J. Szucs, H.-Y. Tsai, M. Kolovratnik, Direct integration of an organic rankine cycle into an internal combustion engine cooling system for comprehensive and simplified waste heat recovery, Energy Reports 7 (2021) 644-656, technologies and Materials for Renewable Energy, Environment and Sustainability. doi:https: //doi.org/10.1016/j.egyr.2021.07.088.
[10] L. Vesely, V. Dostal, O. Bartos, V. Novotny, Pinch point analysis of heat exchangers for supercritical carbon dioxide with gaseous admixtures in CCS systems, Energy Procedia 86 (2016) 489-499. doi: 10.1016 /j.egypro.2016.01.050.
[11] V. Novotný, M. Vitvarová, Effect of different configurations of physical solvent based acid gas removal and CO2 capture for IGCC CCS power plants, in: M. Vesely, Z. Hrdlicka, J. Hanika, J. Lubojacky (Eds.), 4th International Conference on Chemical Technology, Mikulov, Czech Republic, Czech soc industrial chemistry, Mikulov, Czechia, 2016, pp. 308-314.
[12] S. Roussanaly, M. Vitvarova, R. Anantharaman, D. Berstad, B. Hagen, J. Jakobsen, V. Novotny, G. Skaugen, Techno-economic comparison of three technologies for pre-combustion \mathrm{CO} 2 capture from a lignite-fired IGCC, Frontiers of Chemical Science and Engineering 14 (3) (2020) 436-452. doi : 10.1007 / \mathrm{s} 11705-019-1870-8.
[13] V. Novotny, V. Basta, P. Smola, J. Spale, Review of carnot battery technology commercial development, Energies 15 (2) (2022). doi:10.3390/ en15020647.
[14] Vaclav Novotny, Miroslav Rathan, Jan Špale, Martin Hofman, Vít Bašta, Carnot Battery for industrial waste heat recovery application - case study, comprehensive modelling and considerations for a pilot installation, in: International Workshop on Carnot Batteries, Stuttgart, 2020 . URL https://www.researchgate.net/publication/344557176_ Carnot_Battery_for_industrial_waste_heat_recovery_ application_-_case_study_comprehensive_modelling_and_ considerations_for_a_pilot_installation
[15] V. Novotny, Combined heat and power coal fired plants - the best choice of early grid-scale Carnot batteries applications, in: Enerstock 2021, Ljubljana, Slovenia, 2021.
[16] I. Johnson, T. William, W. T. Choate, A. Amber Davidson, BCS Inc., Waste Heat Recovery: Technology and Opportunities in U.S. Industry, U.S. Department of Energy - Industrial Technologies Program (2008) 1-112. URL http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf
[17] U. Department of Energy, Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Waste Heat Recovery Systems, Tech. rep., U.S. Department of Energy, Washington, DC, USA (2015).
[18] S. Brückner, S. Liu, L. Miró, M. Radspieler, L. F. Cabeza, E. Lävemann, Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies, Applied Energy 151 (2015) 157-167. doi: 10.1016/j.apenergy.2015.01.147.
[19] B. K. Saha, B. Chakraborty, R. Dutta, Estimation of waste heat and its recovery potential from energy-intensive industries, Clean Technologies and Environmental Policy 1 (2020) 3. doi: 10.1007/s10098-020-01919-7.
[20] R. DiPippo, Geothermal power plants: principles, applications, case studies, and environmental impact, Butterworth-Heinemann, Oxford, UK, 2012 .
[21] H. Zhai, Q. An, L. Shi, V. Lemort, S. Quoilin, Categorization and analysis of heat sources for organic rankine cycle systems, Renewable and Sustainable Energy Reviews 64 (2016) 790-805. doi:https://doi.org/10.1016/ j.rser.2016.06.076.
[22] M. Yu, M. S. Gudjonsdottir, P. Valdimarsson, G. Saevarsdottir, Waste heat recovery from aluminum production, in: Minerals, Metals and Materials Series, Vol. Part F6, Springer International Publishing, 2018, pp. 165-178. doi : 10.1007/978-3-319-72362-4_14.
[23] M. Nikolaisen, T. Andresen, System impact of heat exchanger pressure loss in ORCs for smelter off-gas waste heat recovery, Energy 215 (2021) 118956. doi: 10.1016/j.energy.2020.118956.
[24] D. Ziviani, A. Beyene, M. Venturini, Advances and challenges in ORC systems modeling for low grade thermal energy recovery, Applied Energy 121 (2014) 79 95. doi:10.1016/j.apenergy.2014.01.074.
[25] E. Macchi, M. Astolfi, Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications, Woodhead Publishing, 2016 .
[26] T. Tartière, M. Astolfi, A World Overview of the Organic Rankine Cycle Market, Energy Procedia 129 (2017) 2-9. doi:10.1016/ j.egypro.2017.09.159.
[27] C. W. Chan, J. Ling-Chin, A. P. Roskilly, A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation, Applied thermal engineering 50 (1) (2013) 1257-1273. doi: 10.1016/j.applthermaleng.2012.06.041.
[28] N. Rossi, Testing of a new supercritical ORC technology for efficient power generation from geothermal low temperature resources, in: ASME ORC 2013 Conference, ASME ORC Conference 2013, Rotterdam, Netherlands, 2013 . URL http : //hdl. handle.net/11311/1048794
[29] F. Campana, M. Bianchi, L. Branchini, A. De Pascale, A. Peretto, M. Baresi, A. Fermi, N. Rossetti, R. Vescovo, ORC waste heat recovery in European energy intensive industries: Energy and GHG savings, Energy Conversion and Management 76 (2013) 244-252. doi: 10.1016 / j.enconman. 2013.07.041.
[30] K. Bennett, Power Generation Potential from Coproduced Fluids i the Los Angeles Basin, Ph.D. thesis, Stanford University (2012).
[31] Department of Energy and Ormat Join to Validate Electricity Generation from Oil Field Heat, http://www.ormat.com/news/department-energyand-ormat-join-validate-electricity-generation-oil-field-heat, accessed on 2015-09-24 (2007). URL http://www.ormat.com/news/department-energy-and-ormatjoin-validate-electricity-generation-oil-field-heat
[32] L. Pierobon, F. Haglind, Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms, Applied Energy 118 (2014) 156-165. doi:https://doi.org/10.1016/j.apenergy.2013.12.026.
[33] M. Bianchi, A. De Pascale, Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources, Applied Energy 88 (5) (2011) 1500-1509. doi:10.1016/j.apenergy.2010.11.013.
[34] D. Thombare, S. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews 12 (1) (2008) 1-38. doi:10.1016/j.rser.2006.07.001.
[35] M. A. Iqbal, S. Rana, M. Ahmadi, A. Date, A. Akbarzadeh, Experimental study on the prospect of low-temperature heat to power generation using Trilateral Flash Cycle (TFC), Applied Thermal Engineering 172 (2020) 115139. doi : 10.1016/j japplthermaleng.2020.115139.
[36] K. E. Herold, R. Radermacher, S. A. Klein, Absorption chillers and heat pumps, CRC press, 1996 .
[37] J. Deng, R. Wang, G. Han, A review of thermally activated cooling technologies for combined cooling, heating and power systems, Progress in Energy and Combustion Science 37 (2) (2011) 172-203. doi:10.1016/ j.pecs.2010.05.003.
[38] G. Demirkaya, Theoretical and experimental analysis of power and cooling cogeneration utilizing low temperature heat sources, Ph.D. thesis, University of South Florida, (2011). URL http: //scholarcommons.usf.edu/etd/3069/
[39] K. Yang, H. Zhang, Z. Wang, J. Zhang, F. Yang, E. Wang, B. Yao, Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions, Energy 58 (2013) 494-510. doi:10.1016/ j.energy.2013.04.074.
[40] J. D. Maloney, R. C. Robertson, Thermodynamic study of ammonia-water heat power cycles, Tech. rep., National Laboratory, Oak Ridge (1953).
[41] D. S. Ayou, J. C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renewable and Sustainable Energy Reviews 21 (2013) 728-748. doi:10.1016/j.rser.2012.12.068.
[42] A. I. Kalina, Generation of energy by means of a working fluid, and regeneration of a working fluid (EU Patent, EP0065042A1, Nov 1982). URL https : //www.google.com/patents/EP0065042A1?cl=en
[43] A. I. Kalina, Method of generating energy (US Patent, US4548043A, Oct 1985). URL https: //patents.google.com/patent/US4548043A/en
[44] Global Geothermal, Advanced Waste Heat Engineering, Global Geothermal Limited, 2014, accessed on 2015-01-27. URL http://www.wasabienergy.com/, http:// www.globalgeothermal.com/
[45] X. Zhang, M. He, Y. Zhang, A review of research on the Kalina cycle, Renewable and Sustainable Energy Reviews 16 (7) (2012) 5309-5318. doi: 10.1016 /j.rser. 2012.05 .040.
[46] E. Rogdakis, P. Lolos, Kalina Cycles for Power Generation, in: Handbook of Clean Energy Systems, John Wiley \& Sons, Ltd, Chichester, UK, 2015, pp. 1-25. doi: 10.1002/9781118991978.hces014.
[47] O. M. Ibrahim, S. A. Klein, Absorption power cycles, Energy 21 (1) (1996) 21-27. doi : 10.1016/0360-5442 (95) 00083-6.
[48] R. Shankar, T. Srinivas, Options In Kalina Cycle Systems, Energy Procedia 90 (2016) 260-266. doi: 10.1016/j.egypro.2016.11.193.
[49] M. Jonsson, Advanced power cycles with mixture as the working fluid, Doctoral thesis (2003).
[50] Wasabi Energy, Corporate Overview \& Update, Tech. Rep. June, accessed on 2015-09-24 (2011). URL http: //www.wasabienergy.com/Downloads/\WAS\%20Corp\%20pres\% 20June\%202011.pdf
[51] Z. Guzović, B. Majcen, S. Cvetković, Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources, Applied energy 98 (2012) 404-414. doi:10.1016/j.apenergy. 2012.03.064.
[52] Z. Guzović, D. Lončar, N. Ferdelji, Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy, Energy 35 (8) (2010) 3429-3440. doi : 10.1016 / j.energy.2010.04.036.
[53] S. E. Aly, A theoretical analysis of a solar-fuel assisted absorption power cycle (SFAPC), Heat Recovery Systems and CHP 8 (2) (1988) 149-156. doi : 10.1016/0890-4332 (88) 90007-5.
[54] T. Ishida, S. Kawano, I. Kohtaka, K. Yamada, H. Kaku, T. Narita, Hybrid Rankine cycle system (US Patent, US5007240A, Apr 1991). URL https://patents.google.com/patent/US5007240A/
[55] T. Ishida, S. Kawano, I. Kohtaka, K. Yamada, H. Kaku, T. Narita, Hybrid Rankine cycle system (EU Patent, EP0328103A1, Aug 1989). URL https://patents.google.com/patent/EP0328103A1/
[56] V. E. Styliaras, A mixed cycle for converting heat to mechanical work, Heat Recovery Systems and CHP 15 (8) (1995) 749-753. doi:10.1016/ 0890-4332(94) 00083-W.
[57] N. Garcia-Hernando, M. de Vega, A. Soria-Verdugo, S. SanchezDelgado, Energy and exergy analysis of an absorption power cycle, Applied Thermal Engineering 55 (1) (2013) 69-77. doi:10.1016/ j.applthermaleng.2013.02.044.
[58] M. De Vega, J. A. Almendros-Ibáñez, G. Ruiz, Performance of a LiBrwater absorption chiller operating with plate heat exchangers, Energy conversion and management 47 (18) (2006) 3393-3407. doi:10.1016/ j.enconman.2006.01.005.
[59] N. Shokati, F. Ranjbar, M. Yari, A comparative analysis of rankine and absorption power cycles from exergoeconomic viewpoint, Energy Conversion and Management 88 (2014) 657-668. doi:10.1016/ j.enconman. 2014.09.015.
[60] J. Mascuch, Economic perspectives of connecting microcogeneration nad plug-in hybrids in Czech household [Ekonomicke perspektivy spojeni mikrokogenerace a plug-in hybridu v ceske domacnosti], in: 11th conference on Power System Engineering, Thermodynamics \& Fluid Flow ES 2012, Srni, Czech Republic, 2012 .
[61] R. S. Patil, S. S. Bhagwat, Thermodynamic analysis and optimisation of double effect absorption type combined power and cooling cycle using LiBr-water as working fluid, International Journal of Exergy 34 (2) (2021) 159-178. doi:10.1504/IJEX.2021.113003.
[62] S. Yosaf, H. Ozcan, Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation, Energy 163 (2018) 88-99. doi: 10.1016/j.energy. 2018.08.033.
[63] H. Ozcan, S. Yosaf, Energy and exergy analysis of advanced absorption power cycles using salt-water mixtures as working fluids, Article in International Journal of Exergy 25 (3) (2018) 187-202. doi:10.1504/ IJEX.2018.10011561.
[64] X. Li, D. Zheng, M. Zhang, L. Dong, Vapor-liquid equilibrium measurement of 1,1,1,3,3-pentafluoropropane+ \mathrm{N}, N-dimethylformamide/diethylene glycol dimethyl ether/N-methyl-2pyrrolidone working fluids for absorption power cycle, Fluid Phase Equilibria 366 (2014) 1-8. doi : 10.1016/j.fluid.2014.01.007.
[65] T. Robbins, S. Garimella, Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle, in: International Refrigeration and Air Conditioning Conference, no. Paper 1157, Purdue, USA, 2010 . URL https://docs.lib.purdue.edu/iracc/1157/
[66] T. Eller, F. Heberle, D. Brüggemann, Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle, Energy 119 (2017) 188-198. doi:10.1016/j.energy.2016.12.081.
[67] D. W. Wu, R. Z. Wang, Combined cooling, heating and power: A review, Progress in Energy and Combustion Science 32 (5-6) (2006) 459-495. doi: 10.1016/j.pecs.2006.02.001.
[68] J. Wang, Z. Han, Z. Guan, Hybrid solar-assisted combined cooling, heating, and power systems: A review (nov 2020). doi:10.1016/ j.rser.2020.110256.
[69] M. Wegener, A. Malmquist, A. Isalgué, A. Martin, Biomass-fired combined cooling, heating and power for small scale applications - A review (nov 2018). doi:10.1016/j.rser.2018.07.044.
[70] D. S. Ayou, J. C. Bruno, A. Coronas, Combined absorption power and refrigeration cycles using low- and mid-grade heat sources, Science and Technology for the Built Environment 21 (7) (2015) 934-943. doi:10.1080/ 23744731.2015 .1025681 .
[71] G. Demirkaya, R. V. Padilla, D. Y. Goswami, A review of combined power and cooling cycles, Wiley Interdisciplinary Reviews: Energy and Environment 2 (5) (2013) 534-547. doi:10.1002/wene. 75 .
[72] J. Demierre, D. Favrat, J. Schiffmann, J. Wegele, Experimental investigation of a Thermally Driven Heat Pump based on a double Organic Rankine Cycle and an oil-free Compressor-Turbine Unit, International Journal of Refrigeration 44 (2014) 91-100. doi: 10.1016/j.ijrefrig.2014.04.024.
[73] J. Rashidi, P. Ifaei, I. J. Esfahani, A. Ataei, C. K. Yoo, Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles, Energy Conversion and Management 127 (2016) 170-186. doi: 10.1016 / J.ENCONMAN.2016.09.014.
[74] A. C. Oliveira, C. Afonso, J. Matos, S. Riffat, M. Nguyen, P. Doherty, A combined heat and power system for buildings driven by solar energy and gas, Applied Thermal Engineering 22 (6) (2002) 587-593. doi:10.1016/ S1359-4311(01) 00110-7.
[75] H. Cho, A. D. Smith, P. Mago, Combined cooling, heating and power: A review of performance improvement and optimization, Applied Energy 136 (2014) 168-185. doi:10.1016/j.apenergy.2014.08.107.
[76] P. Ahmadi, I. Dincer, M. A. Rosen, Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration, Energy Conversion and Management 64 (2012) 447-453. doi:10.1016/j.enconman.2012.06.001.
[77] N. Chaiyat, T. Kiatsiriroat, Analysis of combined cooling heating and power generation from organic Rankine cycle and absorption system, Energy 91 (2015) 363-370. doi:10.1016/j.energy.2015.08.057.
[78] P. Kumar, O. Singh, Thermoeconomic analysis of SOFC-GT-VARS-ORC combined power and cooling system, International Journal of Hydrogen Energy 44 (50) (2019) 27575-27586. doi:10.1016/j.ijhydene.2019.08.198.
[79] J. Rashidi, C. K. Yoo, Exergetic and exergoeconomic studies of two highly efficient power-cooling cogeneration systems based on the Kalina and absorption refrigeration cycles, Applied Thermal Engineering 124 (2017) 1023-1037. do : 10.1016 / J.APPLTHERMALENG.2017.05.195.
[80] D. Prigmore, R. Barber, Cooling with the sun's heat Design considerations and test data for a Rankine Cycle prototype, Solar Energy 17 (3) (1975) 185-192. doi: 10.1016/0038-092X(75) 90058-4.
[81] H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, C. Ward, Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling, Energy 36 (1) (2011) 447-458. doi : 10.1016/j.energy.2010.10.020.
[82] B. Patel, N. B. Desai, S. S. Kachhwaha, V. Jain, N. Hadia, Thermoeconomic analysis of a novel organic Rankine cycle integrated cascaded vapor compression-absorption system, Journal of Cleaner Production 154 (2017) 26 -40. doi: 10.1016/ j.jclepro.2017.03.220.
[83] C. Kutlu, M. T. Erdinc, J. Li, Y. Wang, Y. Su, A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system, Renewable Energy 143 (2019) 301-312. doi:10.1016/j.renene.2019.05.017.
[84] S. Aphornratana, T. Sriveerakul, Analysis of a combined Rankine-vapourcompression refrigeration cycle, Energy Conversion and Management 51 (12) (2010) 2557-2564. doi:10.1016/j .enconman. 2010.04.016.
[85] J. Wang, Y. Dai, Z. Sun, A theoretical study on a novel combined power and ejector refrigeration cycle, International Journal of Refrigeration 32 (6) (2009) 1186-1194. doi:10.1016/j.ijrefrig.2009.01.021.
[86] A. Habibzadeh, M. M. Rashidi, N. Galanis, Analysis of a combined power and ejector-refrigeration cycle using low temperature heat, Energy Conversion and Management 65 (2013) 381-391. doi:10.1016/ j.enconman.2012.08.020.
[87] X. Yang, L. Zhao, H. Li, Z. Yu, Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture, Applied Energy 160 (2015) 912-919. doi: 10.1016/j.apenergy.2015.05.001.
[88] X. Yang, N. Zheng, L. Zhao, S. Deng, H. Li, Z. Yu, Analysis of a novel combined power and ejector-refrigeration cycle, Energy Conversion and Management 108 (2016) 266-274. doi : 10.1016/j .enconman. 2015.11.019.
[89] M. Sadeghi, M. Yari, S. M. Mahmoudi, M. Jafari, Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle - Desalination system, Applied Energy 208 (2017) 239-251. doi: 10.1016 / j.apenergy.2017.10.047.
[90] H. Ghaebi, H. Rostamzadeh, P. S. Matin, Performance evaluation of ejector expansion combined cooling and power cycles, Heat and Mass Transfer/Waerme- und Stoffuebertragung 53 (9) (2017) 2915–2931. doi: 10.1007 / s00231-017-2034-3.
[91] F. Xu, D. Yogi Goswami, S. S. Bhagwat, A combined power/cooling cycle, Energy 25 (3) (2000) 233 246. doi:10.1016/S0360-5442(99) 00071-7.
[92] G. Demirkaya, R. Padilla, A. Fontalvo, M. Lake, Y. Lim, Thermal and Exergetic Analysis of the Goswami Cycle Integrated with Mid-Grade Heat Sources, Entropy 19 (8) (2017) 416. doi: 10.3390/e19080416.
[93] A. A. Hasan, D. Y. Goswami, S. Vijayaraghavan, First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source, Solar Energy 73 (5) (2002) 385-393. doi : 10.1016 / \mathrm{S} 0038- 092 X(02) 00113-5 .
[94] Rankine Engine, MicroCHP, accessed on 2015-04-08. URL http://microchap.info/rankine\%5C_engine.htmhttp://microchap.info/rankine_engine.htm
[95] C. Martin, D. Y. Goswami, Effectiveness of cooling production with a combined power and cooling thermodynamic cycle, Applied Thermal Engineering 26 (5-6) (2006) 576-582. doi:10.1016/j.applthermaleng.2005.07.007.
[96] A. Fontalvo, H. Pinzon, J. Duarte, A. Bula, A. G. Quiroga, R. V. Padilla, Exergy analysis of a combined power and cooling cycle, Applied Thermal Engineering 60 (1-2) (2013) 164-171. doi:10.1016/ j.applthermaleng. 2013.06.034.
[97] R. V. Padilla, G. Demirkaya, D. Y. Goswami, E. Stefanakos, M. M. Rahman, Analysis of power and cooling cogeneration using ammoniawater mixture, Energy 35 (12) (2010) 4649-4657. doi:10.1016/ j.energy.2010.09.042.
[98] G. Demirkaya, R. Vasquez Padilla, D. Y. Goswami, E. Stefanakos, M. M. Rahman, Analysis of a combined power and cooling cycle for low-grade heat sources, International Journal of Energy Research 35 (13) (2011) 1145-1157. doi: 10.1002 / er. 1750 .
[99] S. Vijayaraghavan, D. Y. Goswami, A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage, Energy 31 (8) (2006) 1177-1196. doi: 10.1016/j.energy.2005.04.014.
[100] S. M. Sadrameli, D. Y. Goswami, Optimum operating conditions for a combined power and cooling thermodynamic cycle, Applied Energy 84 (3) (2007) 254-265. doi : 10.1016/j.apenergy.2006.08.003.
[101] H. Chen, D. Y. Goswami, Simulation of a Thermodynamic Cycle with Organic Absorbents and CO2 as a Working Fluid, in: The 2008 AIChE Annual Meeting, Philadelphia, PA, USA. URL https://folk.ntnu.no/skoge/prost/proceedings/aiche-2008/ data/papers/P135631
[102] S. Vijayaraghavan, D. Y. Goswami, Organic working fluids for a combined power and cooling cycle, Journal of Energy Resources Technology 127 (2) (2005) 125-130. doi:10.1115/1.1885039.
[103] G. Demirkaya, R. V. Padilla, A. Fontalvo, A. Bula, D. Y. Goswami, Experimental and Theoretical Analysis of the Goswami Cycle Operating at Low Temperature Heat Sources, Journal of Energy Resources Technology 140 (7) (2018) 072005. doi :10.1115/1.4039376.
[104] G. Tamm, D. Y. Goswami, Novel combined power and cooling thermodynamic cycle for low temperature heat sources, part II: Experimental investigation, Journal of Solar Energy Engineering, Transactions of the A.SME 125 (2) (2003) 223-229. doi : 10.1115/1.1564080.
[105] J. Muye, D. S. Ayou, R. Saravanan, A. Coronas, Performance study of a solar absorption power-cooling system, Applied Thermal Engineering 97 (2016) 59-67. doi:10.1016/j applthermaleng.2015.09.034.
[106] R. Shankar, T. Srinivas, Performance investigation of Kalina cooling cogeneration cycles, International Journal of Refrigeration 86 (2018) 163185. doi:10.1016/J.IJREFRIG.2017.11.019.
[107] R. Shankar, T. Srinivas, Development and analysis of a new integrated power and cooling plant using \mathrm{LiBr}-\mathrm{H} 2 \mathrm{O} mixture, Sadhana - Academy Proceedings in Engineering Sciences 39 (6) (2014) 1547-1562. doi:10.1007/ s 12046-014-0277-y.
[108] W. Rivera, K. Sánchez–Sánchez, J. A. Hernández-Magallanes, J. C. Jiménez-García, A. Pacheco, Modeling of Novel Thermodynamic Cycles to Produce Power and Cooling Simultaneously, Processes 8 (3) (2020) 320 . doi : 10.3390 / \mathrm{pr} 8030320.
[109] D. C. Erickson, G. Anand, I. Kyung, Heat-Activated Dual-Function Absorption Cycle, ASHRAE Transactions: Symposia 110 (1) (2004) 515524 .
[110] C. P. Jawahar, R. Saravanan, J. C. Bruno, A. Coronas, Simulation studies on gax based Kalina cycle for both power and cooling applications, in: Applied Thermal Engineering, Vol. 50, Pergamon, 2013, pp. 1522-1529. doi: 10.1016/j.applthermaleng. 2011.11.004.
[111] G. Praveen Kumar, R. Saravanan, A. Coronas, Experimental studies on combined cooling and power system driven by low-grade heat sources, Energy 128 (2017) 801-812. doi:10.1016/j.energy.2017.04.066.
[112] J. López-Villada, D. S. Ayou, J. C. Bruno, A. Coronas, Modelling, simulation and analysis of solar absorption power-cooling systems, International Journal of Refrigeration 39 (2014) 125-136. doi:10.1016/ j.ijrefrig.2013.11.004.
[113] C. F. Okwose, M. Abid, T. A. Ratlamwala, Performance analysis of compressor-assisted two-stage triple effect absorption refrigeration cycle for power and cooling, Energy Conversion and Management 227 (2021) 113547 . doi: 10.1016/j.enconman. 2020.113547.
[114] N. Shokati, F. Ranjbar, M. Yari, A comprehensive exergoeconomic analysis of absorption power and cooling cogeneration cycles based on Kalina, part 1: Simulation, Energy Conversion and Management 158 (2018) 437-459. doi : 10.1016 / J.ENCONMAN.2017.12.086.
[115] R. Ventas, A. Lecuona, C. Vereda, M. Rodriguez-Hidalgo, Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia/lithium nitrate, Applied Thermal Engineering 115 (2017) 256-266. do : 10.1016 / J.APPLTHERMALENG.2016.12.102.
[116] J. Wang, Y. Dai, L. Gao, Parametric analysis and optimization for a combined power and refrigeration cycle, Applied Energy 85 (11) (2008) 1071-1085. doi:10.1016/j apenergy. 2008.02.014.
[117] N. Zhang, R. Cai, N. Lior, A Novel Ammonia-Water Cycle for Power and Refrigeration Cogeneration, in: Advanced Energy Systems, Vol. 2004, ASME, 2004, pp. 183-196. doi: 10.1115/IMECE2004-60692.
[118] N. Zhang, N. Lior, Methodology for thermal design of novel combined refrigeration/power binary fluid systems, International Journal of Refrigeration 30 (6) (2007) 1072-1085. doi:10.1016/j.ijrefrig.2006.12.005.
[119] T. Parikhani, H. Ghaebi, H. Rostamzadeh, A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis, Energy 153 (2018) 265-277. doi: 10.1016/j.energy.2018.01.153.
[120] R. Younès, H. Zeidan, H. Harb, A. Ghaddar, Optimal design and economical study for solar air-conditioning by absorption chillers, in: International IIR Conference on Latest Development in Refrigerated Storage, Transportation and Display of Food Products, 2005 .
[121] W. Weiss, M. Spörk-Dür, Solar Heat Worldwide. Global Market Development and Trends in 2018. Detailed Market Figures 2017., AEE-Institute for Sustainable Technologies, Gleisdorf, Austria (2019). URL https://www.iea-shc.org/Data/Sites/1/publications/SolarHeat-Worldwide-2019.pdf
[122] D. Zheng, L. Dong, W. Huang, X. Wu, N. Nie, A review of imidazolium ionic liquids research and development towards working pair of absorption cycle, Renewable and Sustainable Energy Reviews 37 (2014) 47-68. doi: 10.1016/j.rser.2014.04.046.
[123] O. M. Ibrahim, S. A. Klein, Thermodynamic properties of ammoniawater mixtures, Transactions-American Society of Heating Refrigerating and Air Conditioning Engineers 99 (1993) 1495 .
[124] R. Tillner-Roth, D. G. Friend, Survey and assessment of available measurements on thermodynamic properties of the mixture water+ ammonia, Journal of physical and chemical reference data 27 (1) (1998) 45-61. doi: 10.1063/1.556014.
[125] E. J. Roehl, Applications of Dühring's Rule, Industrial \& Engineering Chemistry 30 (11) (1938) 1320-1322.
[126] D. S. Kim, C. A. I. Ferreira, A Gibbs Energy Equation for LiBr/H2O Solutions, in: Proceedings of the 6th IIR Gustav Lorentzen Conference on Natural Working Fluids, Glasgow (UK), 2004 .
[127] J. Patek, J. Klomfar, A computationally effective formulation of the thermodynamic properties of \mathrm{LiBr}-\mathrm{H} 2 \mathrm{O} solutions from 273 to 500 \mathrm{~K} over full composition range, International Journal of Refrigeration 29 (4) (2006) 566-578. doi:10.1016/j.ijrefrig.2005.10.007.
[128] H.-J. Kretzschmar, I. Stoecker, M. Kunick, S. Hasch, Property Library for Mixtures of Water/Lithium Bromide FluidEES with LibWaLi for Engineering Equation Solver (2011). URL http://thermodynamik.hszigr.de/cmsfg/_data/FluidEES_ LibWaLi_Docu_Eng.pdf
[129] Z. Yuan, K. E. Herold, Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation, HVAC\&R Research 11 (3) (2005) 377-393. doi:10.1080/10789669.2005.10391144.
[130] W. Rivera, R. J. Romero, M. J. Cardoso, J. Aguillón, R. Best, Theoretical and experimental comparison of the performance of a singlestage heat transformer operating with water/lithium bromide and water/Carrol, International journal of energy research 26 (8) (2002) 747-762. doi:doi.org/10.1002/er.813.
[131] J. Pátek, J. Klomfar, Thermodynamic properties of the LiCl-H2O system at vapor-liquid equilibrium from 273 \mathrm{~K} to 400 \mathrm{~K}, international journal of refrigeration 31 (2) (2008) 287-303. doi : 10.1016/j.ijrefrig.2007.05.003.
[132] M. R. Conde, Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design, International Journal of Thermal Sciences 43 (4) (2004) 367-382.
[133] X. Li, D. Zheng, Y. Shen, X. Meng, B. Li, Vapor-liquid equilibria of difluoromethane +\mathrm{N}, N-dimethylacetamide, difluoromethane+ dimethylether diethylene glycol and 1, 1-difluoroethane+ dimethylether diethylene glycol systems, Fluid Phase Equilibria 347 (2013) 15-21. doi:10.1016/ j.fluid.2013.03.009.
[134] J. O. Valderrama, P. A. Robles, Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids, Industrial and Engineering Chemistry Research 46 (4) (2007) 1338-1344. doi:10.1021/ ie0603058.
[135] M. Seiler, C. Jork, W. Schneider, W. Arlt, Ionic liquids and hyperbranched polymers-Promissing new classes of selective entrainers for extractive distillation, in: International Conference on Distillation \& Absorption, Dusseldorf, Germany, 2002 .
[136] D. Mirolli, Kalina cycle power systems in waste heat recovery applications, Global Cement Magazine (2012).
[137] Wasabi Energy Limited, ASX Announcement - Wasabi Energy Achieves Start-Up of First Kalina Cycle AcoGen Unit at a Japanese Hot Spring, Tech. rep., accessed on 2015-09-24 (2012). URL https://www.yumpu.com/en/document/read/4665733/ announcement-wasabi-energy
[138] H. Leibowitz, M. Mirolli, First Kalina combined-cycle, Power Engineering, accessed on 2021-12-05 (1997). URL https://Www.power-eng.com/coal/first-kalina-combinedcycle/#gref
[139] S. Macwan, THE KALINA CYCLE@ A Major Breakthrough in Efficient Heat to Power Generation, in: CHP2013 \& WHP2013 Conference and Trade Show, 2013, accessed on 2021-12-05. URL https://docplayer net/50320875-The-kalina-cycle-a-majorbreakthrough-in-efficient-heat-to-power-generation-presentedby-sunil-macwan.html
[140] H. Mlcak, M. Mirolli, H. Hjartarson, M. Ralph, Notes from the North: a Report on the Debut Year of the 2 MW Kalina Cycleß Geothermal Power Plant in Húsavík, Iceland, TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL (2002) 715-718.
[141] R. Maack, P. Valdimarsson, Operating experience with Kalina power plants, VDI BERICHTE 1703 (2002) 107-116.
[142] P. Whittaker, Corrosion in the Kalina cycle An investigation into corrosion problems at the Kalina cycle geothermal power plant in Húsavík, Iceland, Ph.D. thesis, University of Iceland \& the University of Akureyri (2009).
[143] Tender sale of up to 3.4 MWe Kalina geothermal power plant technology of Unterhaching - ThinkGeoEnergy - Geothermal Energy News. URL https://www.thinkgeoenergy.com/tender-sale-of-up-to-3-4-mwe-kalina-geothermal-power-plant-technology-of-unterhaching/
[144] Api schmidt bretten - plate heat exchangers, accessed on 2015-12-23. URL http://www.powertechnology.com/contractors/cooling/apischmidt-bretten/
[145] KALINA, Electricity from heat, Technology, accessed on 2016-04-24. URL http: //www.kalinapower.com/technology/
[146] Wasabi Energy Limited, ASX Announcement - Wasabi Energy Provides Update on Significant Kalina Cycle Related Activities \&Development from Asia, Tech. rep., Melbourne, Australia, accessed on 2015-09-24 (2011).URL https://www.asx.com.au/asxpdf/20110415/pdf/ 41 \mathrm{y} 27 \mathrm{tgxz} 9 \mathrm{nlcv} \cdot \mathrm{pdf}
[147] G. O. Tamm, Experimental investigation of an ammonia-based combined power and cooling cycle, Ph.D. thesis, UNIVERSITY OF FLORIDA (2003).
[148] C. Martin, Study of cooling production with a combined power and cooling thermodynamic cycle, Ph.D. thesis, University of Florida (2004).
[149] J. Ibarra-Bahena, R. J. Romero, Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review, Energies 7 (2) (2014) 751-766. doi: 10.3390/en7020751.
[150] W. A. Miller, The Experimental Analysis of Aqueous Lithium Bromide Vertical Film Absorption, Ph.D. thesis, The University of Tennessee, Knoxville (1998). URL http://trace.tennessee.edu/utk_graddiss/1606
[151] F. Ragazzi, C. O. Pedersen, Thermodynamic optimization of evaporators with zeotropic refrigerant mixtures, in: 1996 annual meeting of the ASHRAE, San Antonio, TX (United States), 22-26 Jun 1996; Part Of ASHRAE transactions 1996: Volume 102, Part 2; PB: 836 p., no. April, Air Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign., Atlanta, GA (United States), 1995 .
[152] L. Zhao, Y. Zhu, X. Wang, J. Han, Heat transfer pinch point of zeotropic refrigerants in condenser with air-conditioning operation, Journal of chemical industry and engineering-China 58 (10) (2007) 2450 .
[153] W. Mulroy, P. A. Domanski, D. Didion, Glide matching with binary and ternary zeotropic refrigerant mixtures Part 1. An experimental study, International Journal of Refrigeration 17 (4) (1994) 220-225. doi:10.1016/ 0140-7007 (94) 90037-X.
[154] M. Belghazi, A. Bontemps, J. C. Signe, C. Marvillet, Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. Comparison of experimental results and a classical model, International journal of refrigeration 24 (8) (2001) 841-855. doi: 10.1016 / S0140-7007 (00) 00037-2.
[155] J. H. Kim, J. M. Cho, M. S. Kim, Cooling performance of several \mathrm{CO} 2 /propane mixtures and glide matching with secondary heat transfer fluid, International Journal of Refrigeration 31 (5) (2008) 800-806. doi: 10.1016/j.ijrefrig.2007.11.009.
[156] H. Khemani, Water-Lithium Bromide Vapor Absorption Refrigeration System, accessed on 2021-12-05 (2014).URL http://www.brighthubengineering.com/hvac/66301-waterlithium-bromide-vapor-absorption-refrigeration-system/
[157] R. Nasr Isfahani, S. Moghaddam, R. N. Isfahani, S. Moghaddam, R. Nasr Isfahani, S. Moghaddam, Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures, International Journal of Heat and Mass Transfer 63 (2013) 82-90. doi: 10.1016/j.ijheatmasstransfer.2013.03.053.
[158] B. Michel, N. Le Pierrès, B. Stutz, Performances of grooved plates falling film absorber, Energy 138 (2017) 103-117. doi:10.1016/ j.energy.2017.07.026.
[159] M. Mortazavi, R. Nasr Isfahani, S. Bigham, S. Moghaddam, Absorption characteristics of falling film \mathrm{LiBr} (lithium bromide) solution over a finned structure, Energy 87 (2015) 270-278. doi:10.1016/J.ENERGY.2015.04.074.
[160] J. Olarte-Cortés, J. Torres-Merino, J. Siqueiros, Experimental study of a graphite disks absorber couple to a heat transformer, Experimental Thermal and Fluid Science 46 (2013) 29-36. doi:10.1016/ j.expthermflusci.2012.11.013.
[161] N. García-Hernando, J. A. Almendros-Ibáñez, G. Ruiz, M. de Vega, On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers, Energy Conversion and Management 52 (2) (2011) 1520-1525. doi:10.1016/J.ENCONMAN.2010.10.020.
[162] J. D. Marcos, M. Izquierdo, R. Lizarte, E. Palacios, C. A. Infante Ferreira, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture, International Journal of Refrigeration 32 (4) (2009) 627-637. doi:10.1016/j.ijrefrig.2009.02.003.
[163] A. H. H. Ali, P. Schwerdt, Characteristics of the membrane utilized in a compact absorber for lithium bromide-water absorption chillers, International Journal of Refrigeration 32 (8) (2009) 1886-1896. doi: 10.1016/j.ijrefrig.2009.07.009.
[164] R. Nasr Isfahani, A. Fazeli, S. Bigham, S. Moghaddam, R. N. Isfahani, A. Fazeli, S. Bigham, S. Moghaddam, Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes, International Journal of Multiphase Flow 58 (2014) 27-38. doi:10.1016/ j.ijmultiphaseflow. 2013.08.005.
[165] N. Garcia-Hernando, M. de Vega, M. Venegas, U. Ruiz-Rivas, Microabsorption chiller components based on membrane technology, in: Energy \& Materials Research Conference - EMR2015, 2015 .
[166] Project completion summary, Cooler homes from solar powered mini-chillers, accessed on 2016-06-30.URL https://www.eon.com/content/dam/eon-com/ueber-uns/ innovation/research_initiatives/SolarCool_PCS_EIRI_12458_ 131205.pdf
[167] R. Nasr Isfahani, K. Sampath, S. Moghaddam, R. N. Isfahani, K. Sampath, S. Moghaddam, Nanofibrous membrane-based absorption refrigeration system, International Journal of Refrigeration 36 (8) (2013) 2297-2307. doi : 10.1016/j.ijrefrig.2013.07.019.
[168] H. Lazalde-Crabtree, Design approach of steam-water separators and steam dryers for geothermal applications, Geothermal Resource Concil Bulletin 13 (8) (1984) 11-20.
[169] Z. Zeleny, V. Vodicka, V. Novotny, J. Mascuch, Gear pump for low power output ORC - an efficiency analysis, Energy Procedia 129 (2017) 1002-1009. doi : 10.1016/j.egypro.2017.09.227.
[170] M. Imran, M. Usman, B.-S. Park, D.-H. Lee, Volumetric expanders for low grade heat and waste heat recovery applications, Renewable and Sustainable Energy Reviews 57 (2016) 1090-1109. doi:10.1016/J.RSER.2015.12.139.
[171] S. Quoilin, M. V. D. Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of Organic Rankine Cycle (ORC) systems, Renewable and Sustainable Energy Reviews 22 (2013) 168-186. doi: 10.1016 /j.rser.2013.01.028.
[172] A. P. Weiß, Volumetric Expander Versus Turbine - Which Is the Better Choice for Small Orc Plants, in: 3rd International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium, 2015, pp. 1-10.
[173] S. H. Kang, Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy 41 (1) (2012) 514-524. doi:10.1016/j.energy 2012.02 .035.
[174] M. Pini, C. De Servi, M. Burigana, S. Bahamonde, A. Rubino, S. Vitale, P. Colonna, Fluid-dynamic design and characterization of a mini-ORC turbine for laboratory experiments, Energy Procedia 129 (2017) 1141-1148. doi : 10.1016/J.EGYPRO.2017.09.186.
[175] D. Fiaschi, G. Manfrida, F. Maraschiello, Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles, Applied Energy 97(2012) 601-608. doi : 10.1016/J.APENERGY .2012.02.033.
[176] D. Fiaschi, G. Manfrida, F. Maraschiello, Design and performance prediction of radial ORC turboexpanders, Applied Energy 138 (2015) 517-532. doi: 10.1016/J.APENERGY. 2014.10.052.
[177] F. Alshammari, A. Karvountzis-Kontakiotis, A. Pesiridis, T. Minton, Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System, Energy Procedia 129 (2017) 285-292. doi:10.1016/ J.EGYPR0.2017.09.155.
[178] A. P. Weiss, G. Zinn, Micro Turbine Generators For Waste Heat Recovery And Compressed Air Energy Storage, in: 15th conference on Power System Engineering, Thermodynamics \& Fluid Flow - ES 2016, Pilsen, 2016, pp. 1-9.
[179] A. P. Weiß., T. Popp, G. Zinn, M. Preißinger, D. Brüggemann, A MicroTurbine-Generator-Construction-Kit (MTG-c-kit) for Small-Scale Waste Heat Recovery ORC-plants, in: Heat Power Cycles Conference, University of Bayreuth, 2018 .
[180] G. Żywica, T. Kaczmarczyk, E. Ihnatowicz, P. Bagiński, A. Andrearczyk, Design and manufacturing of micro-turbomachinery components with application of heat resistant plastics, Mechanics and Mechanical Engineering Vol. 22 (nr 2) (2018). doi:10.2478/mme-2018-0051.
[181] G. Zywica, T. Z. Kaczmarczyk, E. Ihnatowicz, P. Baginski, A. Andrearczyk, APPLICATION OF A HEAT RESISTANT PLASTIC IN A HIGH-SPEED MICROTURBINE DESIGNED FOR THE DOMESTIC ORC SYSTEM, in: 5th International Seminar on ORC Power Systems, 2019 .
[182] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Continuous liquid interface production of 3D objects, Science 347 (6228) (2015) 1349-1352. doi: 10.1126 / science.aaa2397.
[183] R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, J. M. DeSimone, Layerless fabrication with continuous liquid interface production., Proceedings of the National Academy of Sciences of the United States of America 113 (42) (2016) 11703-11708. doi: 10.1073/pnas.1605271113.
[184] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, S. A. Mirhadizadeh, Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation, Applied Thermal Engineering 116 (2017) 549-583. doi:10.1016/ j.applthermaleng.2017.01.100.
[185] M. Meier, W. Gooding, J. Fabian, N. L. Key, Considerations for Using Additive Manufacturing Technology in Centrifugal Compressor Research, Journal of Engineering for Gas Turbines and Power (2019) 110doi: 10.1115/1.4044937.
[186] I. Hernandez-Carrillo, C. Wood, H. Liu, Development of a 1000 \mathrm{~W} organic Rankine cycle micro-turbine-generator using polymeric structural materials and its performance test with compressed air, Energy Conversion and Management 190 (2019) 105-120. doi:10.1016/j.enconman. 2019.03.092.
[187] I. Hernandez-Carrillo, C. J. Wood, H. Liu, Advanced materials for the impeller in an ORC radial microturbine, Energy Procedia 129 (2017) 10471054. doi : 10.1016 / j.egypro. 2017.09 .241 .
[188] I. Hernandez, H. Liu, C. Wood, Advanced Materials for the Impeller in an ORC radial micro-turbine (presentation), in: ORC 2017, Milano, 2017 . URL http://www.orc2017.com/uploads/File/Presentations/11.pdf
[189] J. E. Grady, W. J. Haller, P. E. Poinsatte, M. C. Halbig, S. L. Schnulo, D. Weir, N. Wali, M. Vinup, M. G. Jones, C. Patterson, T. Santelle, J. Mehl, A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing Part I : System Analysis, Component Identifi cation, Additive Manufacturing, and Testing of Polymer Composites, Tech. Rep. May, National Aeronautics and Space Administration, Glenn Research Center Cleveland, Ohio 44135 (2015). doi : NASA/TMâĂŤ2015-218748.
[190] K. C. Chuang, J. E. Grady, S. M. Arnold, R. D. Draper, E. Shin, C. Patterson, T. Santelle, R. Prototyping+manufacturing, C. Lao, M. Rhein, J. Mehl, A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing Part II: Additive Manufacturing and Characterization of Polymer Composites, Tech. rep., National Aeronautics and Space Administration, Glenn Research Center Cleveland, Ohio 44135 (2015).URL https://core.ac.uk/download/pdf/42708657.pdf
[191] M. Arifin, B. Wahono, E. Junianto, A. D. Pasek, Process manufacture rotor radial turbo-expander for small scale organic Rankine cycles using selective laser melting machine, Energy Procedia 68 (2015) 305-310. doi: 10.1016/j.egypro.2015.03.260.
[192] Y. Zhang, T. Duda, J. A. Scobie, C. M. Sangan, C. D. Copeland, A. Redwood, Design of an Air-Cooled Radial Turbine: Part 1 - Computational Modelling, in: Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines, ASME, 2018, p. V008T26A013. doi: 10.1115/GT2018-76378.
[193] Y. Zhang, T. Duda, J. A. Scobie, C. M. Sangan, C. D. Copeland, A. Redwood, Design of an Air-Cooled Radial Turbine: Part 2 - Experimental Measurements of Heat Transfer, in: Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines, ASME, 2018, p. V008T26A014. doi:10.1115/GT2018-76384.
[194] P. ASTM International, West Conshohocken, Standard for Additive Manufacturing - Post Processing Methods - Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion, ASTM F3301-18a (2018)
[195] M. H. Bocanegra-Bernal, Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics, Journal of Materials Science 39 (21) (2004) 63996420 , accessed on 2021-12-05. doi:10.1023/B: JMSC.0000044878.11441.90.
[196] B. Chmiela, B. Koscielniak, J. Cwajna, Effect of hot isostatic pressing on the microstructure of turbine blade airfoil made of nickel-base superalloy, Archives of Metallurgy and Materials 62 (1) (2017) 241-245. doi: 10.1515/ amm-2017-0036.
[197] Quintus Technologies, Hot Isostatic Pressing Supporting Additive Manufacturing Industry.URL https://www2.quintustechnologies.com/HIP_Supporting_AM_ Industry_Brochure_English
[198] L. Hackel, J. R. Rankin, A. Rubenchik, W. E. King, M. Matthews, Laser peening: A tool for additive manufacturing post-processing, Additive Manufacturing 24 (May) (2018) 67-75. doi:10.1016/j.addma.2018.09.013.
[199] Additive Manufacturing Standardization Collaborative, Standardization Roadmap for Additive Manufacturing, version 2 (June) (2018) 269 .
[200] Y. Fu, X. Wang, H. Gao, H. Wei, S. Li, Blade surface uniformity of blisk finished by abrasive flow machining, The International Journal of Advanced Manufacturing Technology 84 (5-8) (2016) 1725-1735. doi: 10.1007 / s 00170-015-8270-0.
[201] @2013-2016 Extrude Hone, AFM: High-Quality Finishing for Industrial 3D Printing - Extrude Hone, accessed on 2019-01-10 (2016).URL https://extrudehone.com/afm-high-quality-finishingindustrial-3d-printing
[202] C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, C. Shi, Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material, Journal of Materials Processing Technology 248 (2017) 1-7. doi:10.1016/J.JMATPROTEC.2017.04.027.
[203] W. Jo, O.-C. Kwon, M.-W. Moon, Investigation of influence of heat treatment on mechanical strength of FDM printed 3D objects, Rapid Prototyping Journal 24 (3) (2018) 637-644. doi:10.1108/RPJ-06-20170131 .
[204] V. Slavković, N. Grujović, A. Disic, A. Dišić, A. Radovanović, Influence of Annealing and Printing Directions on Mechanical Properties of PLA Shape Memory Polymer Produced by Fused Deposition Modeling, in: 6 th International Congress of Serbian Society of Mechanics, Mountain Tara, Serbia, 2017 .URL https://www.researchgate.net/publication/317617713
[205] P. Parandoush, D. Lin, A review on additive manufacturing of polymerfiber composites, Composite Structures 182 (2017) 36-53. doi:10.1016/ j.compstruct.2017.08.088.
[206] A. Kamil, Post Processing for Nylon 12 Laser Sintered Components, Ph.D. thesis, Newcastle University (2016).URL https://theses.ncl.ac.uk/dspace/bitstream/10443/3480/1/Kamil\%2CA.2016.pdf
[207] A. Garg, A. Bhattacharya, A. Batish, On Surface Finish and Dimensional Accuracy of FDM Parts after Cold Vapor Treatment, Materials and Manufacturing Processes 31 (4) (2016) 522-529. doi: 10.1080 / 10426914.2015 .1070425 .
[208] J. C. Kloppers, D. G. Kröger, A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers, International Journal of Heat and Mass Transfer 48 (3) (2005) 765-777. doi: 10.1016/ j.ijheatmasstransfer.2004.09.004.
[209] J. Cihelka, Solar thermal technology [Solární tepelná technika], Malina, Praha, 1994 .
[210] J. Orgill, K. Hollands, Correlation equation for hourly diffuse radiation on a horizontal surface, Solar Energy 19 (4) (1977) 357-359. doi: 10.1016/ 0038-092 X(77) 90006-8 .
[211] M. Brandemuehl, W. Beckman, Transmission of diffuse radiation through CPC and flat plate collector glazings, Solar Energy 24 (5) (1980) 511-513. doi: 10.1016/0038-092X(80) 90320-5.
[212] Cooling Tower Calculator (online tool), accesed on 2015-01-27.URL http://www.gea-energytechnology.com/opencms/opencms/gas / en/calculators/CT_Calculator.htm
[213] R. Dickes, Solar-based ORC power systems, in: ORC-PLUS Workshop, Casablanca, 2016 .URL https://orbi.uliege.be/bitstream/2268/197155/1/Presentation_RDickes_ORC-Plus_workshop_OSV.pdf
[214] O. Aboelwafa, S.-E. E. K. Fateen, A. Soliman, I. M. Ismail, A review on solar Rankine cycles: Working fluids, applications, and cycle modifications, Renewable and Sustainable Energy Reviews 82 (2018) 868-885. doi: 10.1016 / j.rser.2017.09.097.
[215] A. Modi, F. Bühler, J. G. Andreasen, F. Haglind, A review of solar energy based heat and power generation systems, Renewable and Sustainable Energy Reviews 67 (2017) 1047-1064. doi:10.1016/J.RSER.2016.09.075.
[216] W. W. Charters, V. R. Megler, W. D. Chen, Y. F. Wang, Atmospheric and sub-atmospheric boiling of \mathrm{H} 2 \mathrm{O} and \mathrm{LiBr} / \mathrm{H} 2 \mathrm{O} solutions, International Journal of Refrigeration 5 (2) (1982) 107-114. doi: 10.1016/01407007 (82) 90085-8.
[217] C. Shi, Q. Chen, T.-C. Jen, W. Yang, Heat transfer performance of lithium bromide solution in falling film generator, International Journal of Heat and Mass Transfer 53 (2010) 3372-3376. doi:10.1016/ j.ijheatmasstransfer.2010.02.051.
[218] A. P. Weiss, J. Hauer, T. Popp, M. Preissinger, EXPERIMENTAL INVESTIGATION OF A SUPERSONIC MICRO TURBINE RUNNING WITH HEXAMETHYLDISILOXANE, in: 36th Meeting of Departments of Fluid Mechanics and Thermodynamics, 16th conference on Power System Engineering, Thermodynamics \& Fluid Flow - PSE 2017, 2017.
[219] A. P. Weiß, T. Popp, J. Müller, J. Hauer, D. Brüggemann, M. Preißinger, Experimental characterization and comparison of an axial and a cantilever micro-turbine for small-scale Organic Rankine Cycle, Applied Thermal Engineering 140 (2018) 235-244. doi : 10.1016/J.APPLTHERMALENG .2018.05.033.
[220] J. Kadrnožka, Tepelné turbíny a turbokompresory: Základy teorie a výpočtů [Thermal turbines and turbocompressors: Basics of theory and calculations], CERM, Brno, 2004 .
[221] J. Ambroz, Parní turbíny a kondenzace [Steam turbines and condensation], CTU in Prague, Prague, 1984 .
[222] M. Y. Deych, G. A. Philipp, L. Y. Lazarev, Atlas of the Cascade Profiles of Axial-Flows Turbine, Tech. rep., Foreign Technology Div Wright-Patterson AFB Ohio (1976).
[223] C. Schieder, Weiterentwicklung eines Tools zur Auslegung von ORCTurbinen [Further development of a tool for the design of ORC turbines], Master's thesis, Hochschule Amberg - Weiden (2013).
[224] J. Hauer, Analytische Studie zur optimierten Turbinenauslegung [Analytical study for optimised turbine design], Master's thesis, Hochschule Amberg - Weiden (2011)
[225] F. P. Incropera, A. S. Lavine, T. L. Bergman, D. P. Dewitt, Introduction to heat transfer, Wiley, 2007 .


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *