帳號:guest(3.147.27.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳亦新
作者(外文):Chen, Yi-Sin
論文名稱(中文):利用微流體與光誘發介電泳於胞外體的分離與定量之應用
論文名稱(外文):Extracellular Vesicles Isolation and Quantification by Using Microfluidics and Optically-induced Dielectrophoresis
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):陳致真
賴品光
林哲信
林彥亨
口試委員(外文):Chen, Chihchen
Lai, Pin-Kuang
Lin, Che-Hsin
Lin, Yen-Heng
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033807
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:132
中文關鍵詞:胞外泌體微流體血漿分離薄膜免疫染色胞外泌體計數光誘發介電泳
外文關鍵詞:extracellular vesicles (EVs)microfluidicsplasma separationmembrane-based immunostainingdigital EVs countingoptically-induced dielectrophoresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於包含了各種具疾病專一性的生物標的物,如蛋白質、信使核醣核酸、小分子核糖核酸等,大量存在於人體循環系統的胞外泌體已展現出用於臨床診斷的重大潛力。然而,現行用於胞外泌體的分離與定量之方法仍然仰賴於專門且昂貴的儀器以及訓練有素的專業人員,這可能無法支援一些臨床應用,例如定點即時檢測。因此,建立一個自動化的診斷平台能以從臨床樣品(例如,血漿或血液)中萃取出胞外泌體並定量其內和疾病相關的蛋白和核酸仍是一個急切的需要。為了滿足此需求,本研究開發了三個創新的整合型微流體平台,結合了多種技術,包括氣動式微流體、攪拌增強過濾、原位螢光增強薄膜免疫染色、與光誘發介電泳,用於胞外泌體的分離、濃縮、回收與特定胞外泌體的定量。首先,一個能夠從全血中分離並定量CD63+胞外泌體的整合型微流體系統首次被證實。此系統裝置一個創新的攪拌增強過濾模組,藉由同時產生連續擾動渦流與尺寸排除過濾,能顯著提升血液過濾之通量(22.3 μL/min,於8分鐘內回收178 μL的無血小板血漿),並結合免疫磁珠抓取與酵素結合螢光增強技術以濃縮並定量CD63+胞外泌體。其次,一個使用光誘發介電泳操控、濃縮、並回收胞外泌體之全新的微流體平台被建立。胞外泌體於0.2 M的蔗糖溶液中之光誘發介電泳特性首次被探討,並能在32秒內快速濃縮272倍之胞外泌體。此外,一個光誘發胞外泌體分離平台被開發用於自動化分離、釋放(99.8%)、並回收(52.2%)胞外泌體。第三,一個結合濾膜之胞外泌體分離/計數平台,整合聚碳酸酯濾膜用於從全血中分離小胞外泌體(99.4%),以及氧化鋁濾膜用於免疫染色與CD63+胞外泌體之數位計數,能達到81.1%的回收率、90.2%的染色效率、以及3 × 104 EVs/mL的偵測極限。外泌體蛋白於單個胞外泌體上之表現量可被探討及量化。此外,僅需2 μL之全血顯示了其用於指尖血檢測之潛在應用。總結來說,此三個整合型平台為自動化從血液處理到特定胞外泌體之分離與定量提供了巨大的潛力,期望能在不久的未來為胞外體疾病診做做出貢獻。
Extracellular vesicles (EVs), richly existing in body fluids, have shown a significant potential in clinical diagnosis since they contain various specific biomarkers, e.g., proteins, messenger ribonucleic acids (mRNA), and micro ribonucleic acids (miRNA), targeting to corresponding diseases. However, the existing approaches for EVs isolation and quantification still rely on specialized, expensive instruments and well-trained professionals, which may not support some clinical applications, such as point-of-care testing. Therefore, it is still in great need to establish an automatic diagnostic platform capable of extracting EVs from clinical samples (such as plasma or blood) and quantifying disease-associated proteins or nucleic acids. To address this need, three novel integrated microfluidic platforms were developed in this work for EVs isolation, enrichment, recovery and specific EVs quantification via combining multiple techniques, including pneumatic-driven microfluidics, stirring-enhanced filtration, membrane-based immunostaining with in situ fluorescence amplification, and optically-induced dielectrophoresis (ODEP). First, an integrated microfluidic system capable of isolating EVs from whole blood and quantifying CD63+ EVs in one single chip was first demonstrated. This system was equipped with a new stirring-enhanced filtration module by simultaneously generating continuous vortex flow and size-exclusion filtration to significantly enhance the filtering throughput (22.3 μL/min for retrieving 178-μL platelet-free plasma in 8 min) and combined with immunobead capture and enzyme-linked fluorescence amplification for enriching and quantifying CD63+ EVs. Secondly, a new microfluidic platform, using ODEP to manipulate, enrich and recover EVs, was established. The ODEP characterization of nanoscale EVs in 0.2 M sucrose was first explored and rapid EVs enrichment achieved a 272-fold increase in only 32 s. Moreover, an optically-induced EV isolation platform was developed to automate EVs isolation, releasing (99.8%) and recovery (52.2%). Thirdly, a membrane-based EV isolation/counting platform integrated with a polycarbonate (PC) membrane for small EVs isolation (99.4%) from blood and an aluminum oxide (AO) membrane for immunostaining and digital counting of CD63+ EVs in single EV level with a recovery rate of 81.1%, a staining efficiency ≥ 90.2%, and a limit of detection of 3 × 104 EVs/mL, was developed. The exosomal protein expression in single EV level was also investigated and quantified. Furthermore, only 2-μL whole blood was required, indicating a potential application for fingertip-based blood testing. To summarize, these three integrated platforms provide significant potentials for automating sample-to-answer processes from blood pretreatment to specific EVs isolation and quantification, thus contributing to EVs disease diagnosis in the near future.
Abstract I
中文摘要 III
誌謝 V
Table of contents VI
List of Tables X
List of Figures XI
Abbreviations and Nomenclature XX
Chapter 1 Introduction 1
1.1 Importance of circulating extracellular vesicles for disease diagnosis 1
1.2 EV isolation from body fluids 2
1.3 Microfluidics for EV isolation, detection and analysis 3
1.4 Motivation and novelty 4
1.4.1 An integrated microfluidic system for enrichment and quantification of circulating EVs from whole blood by utilizing stirring-enhanced filtration and magnetic bead-based immunoassay 4
1.4.2 Isolation and Recovery of Extracellular Vesicles Using Optically-Induced Dielectrophoresis on an Integrated Microfluidic Platform 7
1.4.3 Isolation and Digital Counting of Extracellular Vesicles from Blood via Membrane-integrated Microfluidics 9
1.5 Scope and structure of the dissertation 11
Chapter 2 An Integrated Microfluidic System for on-chip Enrichment and Quantification of Circulating Extracellular Vesicles from Whole Blood 13
2-1 Introduction 13
2.2 Materials and methods 14
2.2.1 Microfabrication and surface modification of microfluidic chip 14
2.2.2 Immunocapture and ELISA 15
2.2.3 Blood sample preparation and storage 17
2.2.4 Design of the integrated microfluidic chip 17
2.2.5 Procedure of EVs enrichment and quantification from whole blood 20
2.2.6 Scanning electron microscopy (SEM) measurement 21
2.2.7 Hemolysis analysis 23
2.2.8 N-structured illumination microscopy (N-SIM) 23
2.3 Results and discussion 31
2.3.1 Stirring-enhanced filtration 31
2.3.2 Hemolysis and clogging 32
2.3.3 Characterization of filtered PFP 34
2.3.4 EVs enrichment via immunocapture 36
2.3.5 Optimization of immunocapture and on-chip quantification of EVs 38
2.4 Summary 46
Chapter 3 Isolation and Recovery of Extracellular Vesicles Using Optically-Induced Dielectrophoresis on an Integrated Microfluidic Platform 47
3-1 Introduction 47
3.2 Materials and methods 48
3.2.1 PalmGRET cells and cell-derived EVs 48
3.2.2 ODEP for EVs manipulation and enrichment 49
3.2.3 Design and microfabrication of the OIEV platform 49
3.2.4 On-chip EVs isolation and recovery 51
3.2.5 Nanoparticles tracking analysis (NTA) 52
3.2.6 Transmission electron microscopy (TEM) 52
3.3 Results and discussion 58
3.3.1 EVs manipulation via ODEP 58
3.3.2 EVs enrichment via shrinking optical rings 60
3.3.3 Regulation of volumetric flow rate by pneumatic-driven microfluidics 61
3.3.4 EVs isolation and recovery via integration of ODEP and microfluidics 62
3.4 Summary 72
Chapter 4 Isolation and Digital Counting of Extracellular Vesicles from Blood via Membrane-integrated Microfluidics 73
4-1 Introduction 73
4.2 Materials and methods 74
4.2.1 Preparation of cell lines and cell-derived EVs 74
4.2.2 Preparation of blood samples 75
4.2.3 Experimental procedure for EVs isolation, staining, and counting 75
4.2.4 Membrane-based EVs isolation/counting (mEVic) microfluidic platform 77
4.2.5 Microfabrication of PDMS-based chip and package of membrane filters 78
4.2.6 Analysis tools 79
4.3 Results and discussion 84
4.3.1 EVs isolation from blood via stirring-enhanced filtration 84
4.3.2 Characterization of membrane-based EVs staining 85
4.3.3 CD63+ EVs staining/counting using PalmGRET EVs 88
4.3.4 Plasma CD63+ EVs staining/counting 90
4.4 Summary 100
Chapter 5 Conclusions and future perspectives 101
5.1 Conclusions 101
5.2 Future perspectives 103
5.2.1 Size-based EVs sorting via ODEP 103
5.2.2 Isolation of EVs from lipoproteins via ODEP 104
5.2.3 ODEP-based platform for disease diagnosis 104
5.2.4 Investigation of cancer biomarkers and clinical test 105
References 108
Publication list 129
A. Journal papers 129
B. Conference papers 131
1. M. Colombo, G. Raposo, and C. Thery, "Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles," Annual Review of Cell and Developmental Biology, vol. 30, pp. 255-289, 2014.
2. G. Raposo and W. Stoorvogel, "Extracellular vesicles: Exosomes, microvesicles, and friends," Journal of Cell Biology, vol. 200, pp. 373-383, 2013.
3. J. De Toro, L. Herschlik, C. Waldner, and C. Mongini, "Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications," Frontiers in Immunology, vol. 6, pp. 12, 2015.
4. Y. Yuana, A. Sturk, and R. Nieuwland, "Extracellular vesicles in physiological and pathological conditions," Blood Reviews, vol. 27, pp. 31-39, 2013.
5. D.S. Choi, J. Lee, G. Go, Y.K. Kim, and Y.S. Gho, "Circulating extracellular vesicles in cancer diagnosis and monitoring," Molecular Diagnosis & Therapy, vol. 17, pp. 265-271, 2013.
6. D.D. Taylor and C. Gercel-Taylor, "MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer," Gynecologic oncology, vol. 110, pp. 13-21, 2008.
7. N. Kosaka, H. Iguchi, and T. Ochiya, "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis," Cancer Science, vol. 101, pp. 2087-2092, 2010.
8. V. Sunkara, H.-K. Woo, and Y.-K. Cho, "Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics," Analyst, vol. 141, pp. 371-381, 2016.
9. L. Rajendran, M. Honsho, T.R. Zahn, P. Keller, K.D. Geiger, P. Verkade, and K. Simons, "Alzheimer's disease β-amyloid peptides are released in association with exosomes," Proceedings of the National Academy of Sciences, vol. 103, pp. 11172-11177, 2006.
10. S. Saman, W. Kim, M. Raya, Y. Visnick, S. Miro, S. Saman, B. Jackson, A.C. McKee, V.E. Alvarez, and N.C. Lee, "Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease," Journal of biological chemistry, vol. 287, pp. 3842-3849, 2012.
11. L. Alvarez-Erviti, Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, and J.M. Cooper, "Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission," Neurobiology of disease, vol. 42, pp. 360-367, 2011.
12. A.J. Tijsen, Y.M. Pinto, and E.E. Creemers, "Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases," American journal of physiology-heart and circulatory physiology, vol. 303, pp. H1085-H1095, 2012.
13. H. Sonoda, N. Yokota-Ikeda, S. Oshikawa, Y. Kanno, K. Yoshinaga, K. Uchida, Y. Ueda, K. Kimiya, S. Uezono, and A. Ueda, "Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury," American Journal of Physiology-Renal Physiology, vol. 297, pp. F1006-F1016, 2009.
14. I.M. Rood, J.K. Deegens, M.L. Merchant, W.P. Tamboer, D.W. Wilkey, J.F. Wetzels, and J.B. Klein, "Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome," Kidney international, vol. 78, pp. 810-816, 2010.
15. H. Zhou, T. Pisitkun, A. Aponte, P.S. Yuen, J.D. Hoffert, H. Yasuda, X. Hu, L. Chawla, R.-F. Shen, and M.A. Knepper, "Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury," Kidney international, vol. 70, pp. 1847-1857, 2006.
16. S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, and R. Kalluri, "Glypican-1 identifies cancer exosomes and detects early pancreatic cancer," Nature, vol. 523, pp. 177-182, 2015.
17. P.G. Moon, J.E. Lee, Y.E. Cho, S.J. Lee, Y.S. Chae, J.H. Jung, I.S. Kim, H.Y. Park, and M.C. Baek, "Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer," Oncotarget, vol. 7, pp. 40189-40199, 2016.
18. P.G. Moon, J.E. Lee, Y.E. Cho, S.J. Lee, J.H. Jung, Y.S. Chae, H.I. Bae, Y.B. Kim, I.S. Kim, H.Y. Park, and M.C. Baek, "Identification of developmental endothelial Locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection," Clinical Cancer Research, vol. 22, pp. 1757-1766, 2016.
19. S. Khan, J.M.S. Jutzy, M.M.A. Valenzuela, D. Turay, J.R. Aspe, A. Ashok, S. Mirshahidi, D. Mercola, M.B. Lilly, and N.R. Wall, "Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer," Plos One, vol. 7, pp. 10, 2012.
20. J. Lin, J. Li, B. Huang, J. Liu, X. Chen, X.-M. Chen, Y.-M. Xu, L.-F. Huang, and X.-Z. Wang, "Exosomes: novel biomarkers for clinical diagnosis," The scientific world journal, vol. 2015, 2015.
21. S.H. Jalalian, M. Ramezani, S.A. Jalalian, K. Abnous, and S.M. Taghdisi, "Exosomes, new biomarkers in early cancer detection," Analytical biochemistry, vol. 571, pp. 1-13, 2019.
22. C. Théry, K.W. Witwer, E. Aikawa, M.J. Alcaraz, J.D. Anderson, R. Andriantsitohaina, A. Antoniou, T. Arab, F. Archer, and G.K. Atkin-Smith, "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines," Journal of extracellular vesicles, vol. 7, pp. 1535750, 2018.
23. F. Momen-Heravi, L. Balaj, S. Alian, P.Y. Mantel, A.E. Halleck, A.J. Trachtenberg, C.E. Soria, S. Oquin, C.M. Bonebreak, E. Saracoglu, J. Skog, and W.P. Kuo, "Current methods for the isolation of extracellular vesicles," Biological Chemistry, vol. 394, pp. 1253-1262, 2013.
24. B.J. Tauro, D.W. Greening, R.A. Mathias, H. Ji, S. Mathivanan, A.M. Scott, and R.J. Simpson, "Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes," Methods, vol. 56, pp. 293-304, 2012.
25. H.G. Lamparski, A. Metha-Damani, J.-Y. Yao, S. Patel, D.-H. Hsu, C. Ruegg, and J.-B. Le Pecq, "Production and characterization of clinical grade exosomes derived from dendritic cells," Journal of immunological methods, vol. 270, pp. 211-226, 2002.
26. J. Caradec, G. Kharmate, E. Hosseini-Beheshti, H. Adomat, M. Gleave, and E. Guns, "Reproducibility and efficiency of serum-derived exosome extraction methods," Clinical Biochemistry, vol. 47, pp. 1286-1292, 2014.
27. T. Baranyai, K. Herczeg, Z. Onodi, I. Voszka, K. Modos, N. Marton, G. Nagy, I. Mager, M.J. Wood, S. El Andaloussi, Z. Palinkas, V. Kumar, P. Nagy, A. Kittel, E.I. Buzas, P. Ferdinandy, and Z. Giricz, "Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods," Plos One, vol. 10, pp. 13, 2015.
28. R. Cantin, J. Diou, D. Bélanger, A.M. Tremblay, and C. Gilbert, "Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants," Journal of immunological methods, vol. 338, pp. 21-30, 2008.
29. J.B. Simonsen, "What are we looking at? Extracellular vesicles, lipoproteins, or both?," Circulation research, vol. 121, pp. 920-922, 2017.
30. P.E. Chugh, S.-H. Sin, S. Ozgur, D.H. Henry, P. Menezes, J. Griffith, J.J. Eron, B. Damania, and D.P. Dittmer, "Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies," PLoS pathogens, vol. 9, pp. e1003484, 2013.
31. C. Théry, S. Amigorena, G. Raposo, and A. Clayton, "Isolation and characterization of exosomes from cell culture supernatants and biological fluids," Current protocols in cell biology, vol. 30, pp. 3.22. 1-3.22. 29, 2006.
32. A. Clayton, J. Court, H. Navabi, M. Adams, M.D. Mason, J.A. Hobot, G.R. Newman, and B. Jasani, "Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry," Journal of immunological methods, vol. 247, pp. 163-174, 2001.
33. K. Koga, K. Matsumoto, T. Akiyoshi, M. Kubo, N. Yamanaka, A. Tasaki, H. Nakashima, M. Nakamura, S. Kuroki, and M. Tanaka, "Purification, characterization and biological significance of tumor-derived exosomes," Anticancer research, vol. 25, pp. 3703-3707, 2005.
34. J.C. Contreras-Naranjo, H.J. Wu, and V.M. Ugaz, "Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine," Lab on a Chip, vol. 17, pp. 3558-3577, 2017.
35. M. He and Y. Zeng, "Microfluidic exosome analysis toward liquid biopsy for cancer," Jala, vol. 21, pp. 599-608, 2016.
36. S. Gholizadeh, M.S. Draz, M. Zarghooni, A. Sanati-Nezhad, S. Ghavami, H. Shafiee, and M. Akbari, "Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions," Biosensors & Bioelectronics, vol. 91, pp. 588-605, 2017.
37. S.S. Kanwar, C.J. Dunlay, D.M. Simeone, and S. Nagrath, "Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes," Lab on a Chip, vol. 14, pp. 1891-1900, 2014.
38. M. He, J. Crow, M. Roth, Y. Zeng, and A.K. Godwin, "Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology," Lab on a Chip, vol. 14, pp. 3773-3780, 2014.
39. Z. Zhao, Y. Yang, Y. Zeng, and M. He, "A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis," Lab on a Chip, vol. 16, pp. 489-496, 2016.
40. H. Shao, J. Chung, L. Balaj, A. Charest, D.D. Bigner, B.S. Carter, F.H. Hochberg, X.O. Breakefield, R. Weissleder, and H. Lee, "Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy," Nature medicine, vol. 18, pp. 1835, 2012.
41. H. Shao, J. Chung, K. Lee, L. Balaj, C. Min, B.S. Carter, F.H. Hochberg, X.O. Breakefield, H. Lee, and R. Weissleder, "Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma," Nature communications, vol. 6, pp. 6999, 2015.
42. M.X. Wu, Y.S. Ouyang, Z.Y. Wang, R. Zhang, P.H. Huang, C.Y. Chen, H. Li, P. Li, D. Quinn, M. Dao, S. Suresh, Y. Sadovsky, and T.J. Huang, "Isolation of exosomes from whole blood by integrating acoustics and microfluidics," Proceedings of the National Academy of Sciences of the United States of America, vol. 114, pp. 10584-10589, 2017.
43. R.T. Davies, J. Kim, S.C. Jang, E.J. Choi, Y.S. Gho, and J. Park, "Microfluidic filtration system to isolate extracellular vesicles from blood," Lab on a Chip, vol. 12, pp. 5202-5210, 2012.
44. S. Cho, W. Jo, Y. Heo, J.Y. Kang, R. Kwak, and J. Park, "Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane," Sensors and Actuators B: Chemical, vol. 233, pp. 289-297, 2016.
45. V. Sunkara, C.J. Kim, J. Park, H.K. Woo, D. Kim, H.K. Ha, M.H. Kim, Y. Son, J.R. Kim, and Y.K. Cho, "Fully Automated, label-Free isolation of extracellular vesicles from whole blood for cancer diagnosis and monitoring," Theranostics, vol. 9, pp. 1851-1863, 2019.
46. M. Sancho-Albero, V. Sebastián, J. Sesé, R. Pazo-Cid, G. Mendoza, M. Arruebo, P. Martín-Duque, and J. Santamaría, "Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer," Journal of nanobiotechnology, vol. 18, pp. 1-15, 2020.
47. S. Zhou, T. Hu, F. Zhang, D. Tang, D. Li, J. Cao, W. Wei, Y. Wu, and S. Liu, "Integrated microfluidic device for accurate extracellular vesicle quantification and protein markers analysis directly from human whole blood," Analytical chemistry, vol. 92, pp. 1574-1581, 2019.
48. H.K. Woo, V. Sunkara, J. Park, T.H. Kim, J.R. Han, C.J. Kim, H.I. Choi, Y.K. Kim, and Y.K. Cho, "Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples," Acs Nano, vol. 11, pp. 1360-1370, 2017.
49. S.D. Ibsen, J. Wright, J.M. Lewis, S. Kim, S.Y. Ko, J. Ong, S. Manouchehri, A. Vyas, J. Akers, C.C. Chen, B.S. Carter, S.C. Esener, and M.J. Heller, "Rapid isolation and detection of exosomes and associated biomarkers from plasma," Acs Nano, vol. 11, pp. 6641-6651, 2017.
50. P.Y. Chiou, A.T. Ohta, and M.C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, 2005.
51. S.-B. Huang, M.-H. Wu, Y.-H. Lin, C.-H. Hsieh, C.-L. Yang, H.-C. Lin, C.-P. Tseng, and G.-B. Lee, "High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force," Lab on a Chip, vol. 13, pp. 1371-1383, 2013.
52. W.F. Liang, Y.L. Zhao, L.Q. Liu, Y.C. Wang, Z.L. Dong, W.J. Li, G.B. Lee, X.B. Xiao, and W.J. Zhang, "Rapid and label-Free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics," Plos One, vol. 9, pp. 9, 2014.
53. Y.-H. Lin and G.-B. Lee, "An integrated cell counting and continuous cell lysis device using an optically induced electric field," Sensors and Actuators B: Chemical, vol. 145, pp. 854-860, 2010.
54. V. Sokolova, A.K. Ludwig, S. Hornung, O. Rotan, P.A. Horn, M. Epple, and B. Glebel, "Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy," Colloids and Surfaces B-Biointerfaces, vol. 87, pp. 146-150, 2011.
55. R.A. Dragovic, C. Gardiner, A.S. Brooks, D.S. Tannetta, D.J.P. Ferguson, P. Hole, B. Carr, C.W.G. Redman, A.L. Harris, P.J. Dobson, P. Harrison, and I.L. Sargent, "Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis," Nanomedicine-Nanotechnology Biology and Medicine, vol. 7, pp. 780-788, 2011.
56. C. Liu, X. Xu, B. Li, B. Situ, W. Pan, Y. Hu, T. An, S. Yao, and L. Zheng, "Single-exosome-counting immunoassays for cancer diagnostics," Nano letters, vol. 18, pp. 4226-4232, 2018.
57. K. Lee, K. Fraser, B. Ghaddar, K. Yang, E. Kim, L. Balaj, E.A. Chiocca, X.O. Breakefield, H. Lee, and R. Weissleder, "Multiplexed profiling of single extracellular vesicles," ACS nano, vol. 12, pp. 494-503, 2018.
58. Y.S. Chen, Y.D. Ma, C.C. Chen, S.C. Shiesh, and G.B. Lee, "An integrated microfluidic system for on-chip enrichment and quantification of circulating extracellular vesicles from whole blood," Lab on a Chip, vol. 19, pp. 3305-3315, 2019.
59. H.Y. Tseng, C.H. Wang, W.Y. Lin, and G.B. Lee, "Membrane-activated microfluidic rotary devices for pumping and mixing," Biomedical Microdevices, vol. 9, pp. 545-554, 2007.
60. S.B. Huang, M.H. Wu, S.S. Wang, and G.B. Lee, "Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays," Biomedical Microdevices, vol. 13, pp. 415-430, 2011.
61. S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, and M.H. Gil, "Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications," Colloids and Surfaces B-Biointerfaces, vol. 81, pp. 20-26, 2010.
62. M. Simons and G. Raposo, "Exosomes - vesicular carriers for intercellular communication," Current Opinion in Cell Biology, vol. 21, pp. 575-581, 2009.
63. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, and J.O. Lotvall, "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells," Nature Cell Biology, vol. 9, pp. 654-U72, 2007.
64. M. Logozzi, A. De Milito, L. Lugini, M. Borghi, L. Calabro, M. Spada, M. Perdicchio, M.L. Marino, C. Federici, E. Iessi, D. Brambilla, G. Venturi, F. Lozupone, M. Santinami, V. Huber, M. Maio, L. Rivoltini, and S. Fais, "High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients," Plos One, vol. 4, pp. 10, 2009.
65. Y. Hisada, A.C. Auriemma, W. Alexander, C. Ay, and N. Mackman, "Detection of tissue factor-positive extracellular vesicles by laser scanning confocal microscopy," Thrombosis Research, vol. 150, pp. 65-72, 2017.
66. R. Lacroix, C. Judicone, M. Mooberry, M. Boucekine, N.S. Key, F. Dignat-George, and I.S. Workshop, "Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop," Journal of Thrombosis and Haemostasis, vol. 11, pp. 1190-1193, 2013.
67. S.Y. Yang, J.L. Lin, and G.B. Lee, "A vortex-type micromixer utilizing pneumatically driven membranes," Journal of Micromechanics and Microengineering, vol. 19, pp. 9, 2009.
68. V. VanDelinder and A. Groisman, "Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device," Analytical Chemistry, vol. 78, pp. 3765-3771, 2006.
69. W.H. Chang, S.Y. Yang, C.H. Wang, M.A. Tsai, P.C. Wang, T.Y. Chen, S.C. Chen, and G.B. Lee, "Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification," Sensors and Actuators B-Chemical, vol. 180, pp. 96-106, 2013.
70. H.L. Cheng, C.Y. Fu, W.C. Kuo, Y.W. Chen, Y.S. Chen, Y.M. Lee, K.H. Li, C.C. Chen, H.P. Ma, P.C. Huang, Y.L. Wang, and G.B. Lee, "Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system," Lab on a Chip, vol. 18, pp. 10, 2018.
71. C. Chen, J. Skog, C.H. Hsu, R.T. Lessard, L. Balaj, T. Wurdinger, B.S. Carter, X.O. Breakefield, M. Toner, and D. Irimia, "Microfluidic isolation and transcriptome analysis of serum microvesicles," Lab on a Chip, vol. 10, pp. 505-511, 2010.
72. C. Cripps, "Rapid method for the estimation of plasma haemoglobin levels," Journal of Clinical Pathology, vol. 21, pp. 110, 1968.
73. R.A. Malinauskas, "Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices," Artificial Organs, vol. 21, pp. 1255-1267, 1997.
74. C.H. Weng, K.Y. Lien, S.Y. Yang, and G.B. Lee, "A suction-type, pneumatic microfluidic device for liquid transport and mixing," Microfluidics and Nanofluidics, vol. 10, pp. 301-310, 2011.
75. T.A. Crowley and V. Pizziconi, "Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications," Lab on a Chip, vol. 5, pp. 922-929, 2005.
76. M. Li, E. Zeringer, T. Barta, J. Schageman, A.G. Cheng, and A.V. Vlassov, "Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers," Philosophical Transactions of the Royal Society B-Biological Sciences, vol. 369, pp. 8, 2014.
77. M.X. Wu, C.Y. Chen, Z.Y. Wang, H. Bachman, Y.S. Ouyang, P.H. Huang, Y. Sadovsky, and T.J. Huang, "Separating extracellular vesicles and lipoproteins via acoustofluidics," Lab on a Chip, vol. 19, pp. 1174-1182, 2019.
78. H.L. Cheng, C.Y. Fu, W.C. Kuo, Y.W. Chen, Y.S. Chen, Y.M. Lee, K.H. Li, C.C. Chen, H.P. Ma, P.C. Huang, Y.L. Wang, and G.B. Lee, "Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system," Lab on a Chip, vol. 18, pp. 2917-2925, 2018.
79. Y. Wan, G. Cheng, X. Liu, S.J. Hao, M. Nisic, C.D. Zhu, Y.Q. Xia, W.Q. Li, Z.G. Wang, W.L. Zhang, S.J. Rice, A. Sebastian, I. Albert, C.P. Belani, and S.Y. Zheng, "Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes," Nature Biomedical Engineering, vol. 1, pp. 11, 2017.
80. Y.-S. Chen, C.P.-K. Lai, C. Chen, and G.-B. Lee, "Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform," Lab on a Chip, vol. 21, pp. 1475-1483, 2021.
81. A.Y.T. Wu, Y.C. Sung, Y.J. Chen, S.T.Y. Chou, V. Guo, J.C.Y. Chien, J.J.S. Ko, A.L. Yang, H.C. Huang, and J.C. Chuang, "Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism," Advanced Science, vol. 7, pp. 2001467, 2020.
82. C. Fütterer, N. Minc, V. Bormuth, J.-H. Codarbox, P. Laval, J. Rossier, and J.-L. Viovy, "Injection and flow control system for microchannels," Lab on a Chip, vol. 4, pp. 351-356, 2004.
83. J. Voldman, "Electrical forces for microscale cell manipulation," Annu. Rev. Biomed. Eng., vol. 8, pp. 425-454, 2006.
84. N. Liu, Y.B. Lin, Y. Peng, L.M. Xin, T. Yue, Y.Y. Liu, C.H. Ru, S.R. Xie, L. Dong, H.Y. Pu, H.G. Chen, W. Li, and Y. Sun, "Automated parallel electrical characterization of cells using optically-induced dielectrophoresis," Ieee Transactions on Automation Science and Engineering, vol. 17, pp. 1084-1092, 2020.
85. Y.-C. Hsiao, C.-H. Wang, W.-B. Lee, and G.-B. Lee, "Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip," Biomicrofluidics, vol. 12, pp. 034108, 2018.
86. W.-P. Chou, H.-M. Wang, J.-H. Chang, T.-K. Chiu, C.-H. Hsieh, C.-J. Liao, and M.-H. Wu, "The utilization of optically-induced-dielectrophoresis (ODEP)-based virtual cell filters in a microfluidic system for continuous isolation and purification of circulating tumour cells (CTCs) based on their size characteristics," Sensors and Actuators B: Chemical, vol. 241, pp. 245-254, 2017.
87. A.T. Ohta, P.-Y. Chiou, T.H. Han, J.C. Liao, U. Bhardwaj, E.R. McCabe, F. Yu, R. Sun, and M.C. Wu, "Dynamic cell and microparticle control via optoelectronic tweezers," Journal of Microelectromechanical Systems, vol. 16, pp. 491-499, 2007.
88. V.R.N. Telis, J. Telis-Romero, H. Mazzotti, and A.L. Gabas, "Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations," International Journal of food properties, vol. 10, pp. 185-195, 2007.
89. C. Gercel-Taylor, S. Atay, R.H. Tullis, M. Kesimer, and D.D. Taylor, "Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients," Analytical biochemistry, vol. 428, pp. 44-53, 2012.
90. J. Chen, Y. Xu, X. Wang, D. Liu, F. Yang, X. Zhu, Y. Lu, and W. Xing, "Rapid and efficient isolation and detection of extracellular vesicles from plasma for lung cancer diagnosis," Lab on a Chip, vol. 19, pp. 432-443, 2019.
91. F. Ahmed, R.I. Pakunlu, A. Brannan, F. Bates, T. Minko, and D.E. Discher, "Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug," Journal of Controlled Release, vol. 116, pp. 150-158, 2006.
92. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, "Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy," Analytical Chemistry, vol. 72, pp. 3260-3265, 2000.
93. S. Chen, S.-C. Shiesh, G.-B. Lee, and C. Chen, "Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study," PloS one, vol. 15, pp. e0229610, 2020.
94. S. Cai, B. Luo, P.P. Jiang, X.X. Zhou, F. Lan, Q.Y. Yi, and Y. Wu, "Immuno-modified superparamagnetic nanoparticles via host-guest interactions for high-purity capture and mild release of exosomes," Nanoscale, vol. 10, pp. 14280-14289, 2018.
95. J.M. Lewis, A.D. Vyas, Y.Q. Qiu, K.S. Messer, R. White, and M.J. Heller, "Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood," Acs Nano, vol. 12, pp. 3311-3320, 2018.
96. R.J. Simpson, J.W.E. Lim, R.L. Moritz, and S. Mathivanan, "Exosomes: proteomic insights and diagnostic potential," Expert Review of Proteomics, vol. 6, pp. 267-283, 2009.
97. P. Vader, E.A. Mol, G. Pasterkamp, and R.M. Schiffelers, "Extracellular vesicles for drug delivery," Advanced Drug Delivery Reviews, vol. 106, pp. 148-156, 2016.
98. A. Möller and R.J. Lobb, "The evolving translational potential of small extracellular vesicles in cancer," Nature Reviews Cancer, vol. 20, pp. 697-709, 2020.
99. K.W. Witwer, B.W. Van Balkom, S. Bruno, A. Choo, M. Dominici, M. Gimona, A.F. Hill, D. De Kleijn, M. Koh, and R.C. Lai, "Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications," Journal of extracellular vesicles, vol. 8, pp. 1609206, 2019.
100. M. Erali, J.D. Durtschi, K.V. Voelkerding, and R.E. Smith, "Localization and imaging of nucleic acids on nanoporous aluminum oxide membranes," Clinical chemistry, vol. 50, pp. 1819-1821, 2004.
101. L.-G. Liang, M.-Q. Kong, S. Zhou, Y.-F. Sheng, P. Wang, T. Yu, F. Inci, W.P. Kuo, L.-J. Li, and U. Demirci, "An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer," Scientific reports, vol. 7, pp. 1-10, 2017.
102. Y. Tian, L. Ma, M. Gong, G. Su, S. Zhu, W. Zhang, S. Wang, Z. Li, C. Chen, and L. Li, "Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry," ACS nano, vol. 12, pp. 671-680, 2018.
103. C.-H. Wang, Y.-H. Lee, H.-T. Kuo, W.-F. Liang, W.-J. Li, and G.-B. Lee, "Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection," Lab on a Chip, vol. 14, pp. 592-601, 2014.
104. C. Théry, L. Zitvogel, and S. Amigorena, "Exosomes: composition, biogenesis and function," Nature reviews immunology, vol. 2, pp. 569-579, 2002.
105. C. Patriarca, R.M. Macchi, A.K. Marschner, and H. Mellstedt, "Epithelial cell adhesion molecule expression (CD326) in cancer: A short review," Cancer Treatment Reviews, vol. 38, pp. 68-75, 2012.
106. M. Tellez-Gabriel, E. Knutsen, and M. Perander, "Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies," International Journal of Molecular Sciences, vol. 21, pp. 9457, 2020.
107. W. Li, B. Shao, C. Liu, H. Wang, W. Zheng, W. Kong, X. Liu, G. Xu, C. Wang, and H. Li, "Noninvasive diagnosis and nolecular phenotyping of breast cancer through microbead‐assisted flow cytometry detection of tumor‐derived extracellular vesicles," Small Methods, vol. 2, pp. 1800122, 2018.
108. C. Chen, S. Zong, Y. Liu, Z. Wang, Y. Zhang, B. Chen, and Y. Cui, "Profiling of exosomal biomarkers for accurate cancer identification: Combining DNA‐PAINT with machine‐learning‐based classification," Small, vol. 15, pp. 1901014, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *