帳號:guest(3.143.205.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥伶
作者(外文):Chen, Yen-Ling
論文名稱(中文):微流體晶片結合介電泳細胞排列技術於鉤端螺旋體菌造成腎病變之研究
論文名稱(外文):A Microfluidic Chip Integrated DEP Cell patterning Technology for the Analysis of Leptospirosis on Kidney
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):盧向成
張偉嶠
口試委員(外文):Lu, Hsiang-Cheng
Chang, Wei-Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033612
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:免疫反應介電泳鉤端螺旋體症擴散作用膠原蛋白
外文關鍵詞:ImmunoassayDielectrophoresisLeptospiraDiffusionCollagen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
關於腎臟之微流體晶片研究中,主要著重於研究慢性腎臟疾病與離子交換等功能,本研究利用微機電技術製作一微流體晶片,使用固化後具有多孔隙特性的膠原蛋白水膠,以模擬人體腎臟之擴散作用,並結合介電泳技術,以將其應用於研究腎臟細胞與免疫系統之交互作用現象。
本研究使用鉤端螺旋體(Leptospira)的脂多醣來刺激腎小管上皮細胞(HK-2),在HK-2受到刺激後,會分泌細胞激素(MCP-1),此細胞激素以擴散作用傳遞給人類單核球細胞(THP-1),使其分化,以此驗證其免疫反應路徑。而根據實驗結果顯示,本研究設計之電極使腎臟近曲小管細胞在介電泳操作,並培養48小時後,其存活率依舊大於80%,且不影響其細胞生長型態。而在加入50 ng/ml之鉤端螺旋體脂多醣刺激後,HK-2所分泌之細胞激素(MCP-1)高於其他未經DEP操作之結果。透過此研究之晶片系統實驗,成功於體外建立一仿生之腎臟近曲小管微環境,以研究鉤端螺旋體症造成腎病變之現象。
Recent studies of kidney-on-a-chip mainly focus on either the chronic kidney disease (CKD) or the function of ion exchange. In this research, MEMS technology was utilized to fabricate the microfluidic chip for kidney in-vitro model and collagen hydrogel with multi-porosity was used for mimicking the diffusion phenomena of human kidney. Furthermore, the microfluidic chip was integrated with dielectrophoresis manipulation to build an immunoassay system and observe the cell-cell interaction.
In this research, Lipopolysaccharide (LPS) from Leptospira was used to stimulate renal tubular epithelial cells (HK-2). After being stimulated, the HK-2 cells secreted cytokine (MCP-1) transmitted via diffusion to influence the human acute monocyte leukemia cells (THP-1). Then THP-1 cells were observed to differentiate to macrophages. This differentiation verifies the immune response pathway.
Through the electrode pattern designed in this study, the experimental results showed that the viability of HK-2 cells was still higher than 80% and without any morphological change after DEP operating and 48 hours culturing. After stimulation with 50 ng/ml Leptospira LPS, the cytokine MCP-1 secreted by HK-2 cells was higher than other non-DEP operated results. Through the chip system developed in this research, a microenvironment of proximal tubule has successfully established in vitro to study the leptospiral infection in kidney.
ABSTRACT----------------------------------------------I
摘要--------------------------------------------------II
致謝--------------------------------------------------III
目錄--------------------------------------------------IV
圖目錄------------------------------------------------VIII
第一章 緒論-------------------------------------------1
1.1 前言-------------------------------------------1
1.2 研究背景---------------------------------------3
1.2.1 生物微機電與實驗室晶片--------------------------3
1.2.2 腎臟------------------------------------------4
1.2.3 鉤端螺旋體症(Leptospirosis)-------------------6
1.2.4 人體免疫系統-----------------------------------8
1.3 研究動機與目的---------------------------------11
1.4 文獻回顧--------------------------------------12
1.4.1 腎臟仿生晶片 (Kidney-on-a-chip)----------------12
1.4.2 濃度梯度於微流體系統----------------------------18
1.4.2.1 Christmas tree濃度梯度產生器--------------------19
1.4.2.2 逐步濃度梯度產生器------------------------------19
1.4.2.3 Y型濃度梯度產生器-------------------------------20
1.4.2.4 結構或多孔隙材質濃度梯度產生器-------------------21
1.4.3 細胞排列技術於微流體系統------------------------22
1.4.4 人類單核性細胞株THP-1細胞-----------------------24
第二章 晶片設計與系統原理-------------------------------26
2.1 微流體系統設計理論-----------------------------26
2.1.1 擴散機制--------------------------------------26
2.1.2 微流體系統之流阻分析---------------------------28
2.1.3 介電泳理論------------------------------------30
2.1.3.1 電泳(Electrophoresis, EP)--------------------30
2.1.3.2 介電泳(Dielectrophoresis, DEP)---------------30
2.2 微流體晶片設計--------------------------------33
2.2.1 系統晶片設計之概念-----------------------------33
2.2.2 電極之設計------------------------------------37
2.2.3 矮結構之設計----------------------------------38
2.2.4 生物激素擴散區之設計---------------------------39
2.3 微流體系統晶片之操作流程-----------------------40
第三章 微流體晶片系統製程------------------------------42
3.1 晶片製作流程----------------------------------42
3.1.1 系統晶片母模之製程流程-------------------------42
3.1.2 電極製程--------------------------------------44
3.1.3 晶片系統之整合製程-----------------------------46
3.2 製程結果--------------------------------------48
第四章 實驗材料與方法----------------------------------49
4.1 材料備置--------------------------------------49
4.1.1 細胞培養--------------------------------------49
4.1.2 膠原蛋白--------------------------------------51
4.1.3 介電泳緩衝液----------------------------------51
4.1.4 細胞螢光染劑----------------------------------52
4.1.5 細胞死活檢測----------------------------------52
4.1.6 酵素結合免疫分析法(ELISA)----------------------53
4.2 實驗與儀器架設---------------------------------54
第五章 實驗結果與討論-----------------------------------55
5.1 刺激實驗參數測試--------------------------------55
5.2 擴散支架測試-----------------------------------56
5.2.1 流場測試--------------------------------------56
5.2.2 膠原蛋白之固化測試-----------------------------57
5.2.3 膠原蛋白之濃度擴散現象-------------------------59
5.2.4 LPS沖洗測試-------------------------------------62
5.3 DEP操作對細胞之探討----------------------------------64
5.3.1 細胞排列----------------------------------------64
5.3.2 死活率測試--------------------------------------66
5.3.3 細胞激素分析----------------------------------67
5.4 免疫細胞型態分析----------------------------------68
第六章 結論與未來展望----------------------------------70
參考文獻----------------------------------------------72

[1] F. E. Bruce, "Guidelines for Drinking-Water Quality, Vol 2, Health Criteria and Other Supporting Information - Who," Journal of the Royal Society of Health, vol. 106, pp. 111-111, Jun 1986.
[2] N. I. o. Health, "Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States," National Institute of Diabetes and Digestive and Kidney Diseases, 2013.
[3] R. Bashir, "BioMEMS: state-of-the-art in detection, opportunities and prospects," Advanced drug delivery reviews, vol. 56, pp. 1565-1586, 2004.
[4] P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Reviews Drug Discovery, vol. 5, pp. 210-218, 2006.
[5] H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech., vol. 36, pp. 381-411, 2004.
[6] A. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, et al., "A BioMEMS review: MEMS technology for physiologically integrated devices," Proceedings of the IEEE, vol. 92, pp. 6-21, 2004.
[7] J. Tseung, "Robbins and Cotran pathologic basis of disease," ed: LWW, 2005.
[8] Available: https://www.dreamstime.com/royalty-free-stock-photos-anatomy-kidney-internal-view-different-form-image25884538
[9] J. Trueta, A. E. Barclay, K. J. Franklin, and M. M. Prichard, "Studies of the Renal Circulation: A Review," Bristol medico-chirurgical journal (1883), vol. 65, p. 16, 1948.
[10] T. Maack, V. Johnson, S. T. Kau, J. Figueiredo, and D. Sigulem, "Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review," Kidney international, vol. 16, pp. 251-270, 1979.
[11] A. R. Bharti, J. E. Nally, J. N. Ricaldi, M. A. Matthias, M. M. Diaz, M. A. Lovett, et al., "Leptospirosis: a zoonotic disease of global importance," The Lancet infectious diseases, vol. 3, pp. 757-771, 2003.
[12] R. C. R. M. Abdulkader and M. V. Silva, "The kidney in leptospirosis," Pediatric Nephrology, vol. 23, p. 2111, 2008/04/30 2008.
[13] S. Faine, Leptospira and leptospirosis: CRC Press Inc., 1994.
[14] 李志雄, 莊峰榮, 陳靖博, and 許國泰, "Leptospiral Nephropathy-鉤端螺旋體感染造成的腎病變," 腎臟與透析, vol. 16, pp. 179-183, 2004.
[15] R. C. Abdulkader and M. V. Silva, "The kidney in leptospirosis," Pediatric Nephrology, vol. 23, p. 2111, 2008.
[16] Y. Guerrero. (2013). Leptospirosis.
[17] J. D. Capra, C. A. Janeway, P. Travers, and M. Walport, Inmunobiology: the inmune system in health and disease: Garland Publishing, 1999.
[18] R. Van Furth, Z. Cohn, J. Hirsch, J. Humphrey, W. Spector, and H. Langevoort, "The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells," Bulletin of the World Health Organization, vol. 46, p. 845, 1972.
[19] S. J. Collins, "The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression," Blood, vol. 70, pp. 1233-1244, 1987.
[20] H. P. Koeffler, "Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications," Blood, vol. 62, pp. 709-721, 1983.
[21] S. Tsuchiya, M. Yamabe, Y. Yamaguchi, Y. Kobayashi, T. Konno, and K. Tada, "Establishment and Characterization of a Human Acute Monocytic Leukemia-Cell Line (Thp-1)," International Journal of Cancer, vol. 26, pp. 171-176, 1980.
[22] M. Yi, J.-G. Shin, and S.-j. Lee, "Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma," Toxicology and Applied Pharmacology, vol. 330, pp. 100-106, 2017.
[23] E. L. Schiffrin, M. L. Lipman, and J. F. Mann, "Chronic kidney disease," Circulation, vol. 116, pp. 85-97, 2007.
[24] M. Tonelli, N. Wiebe, B. Culleton, A. House, C. Rabbat, M. Fok, et al., "Chronic kidney disease and mortality risk: a systematic review," Journal of the American Society of Nephrology, vol. 17, pp. 2034-2047, 2006.
[25] K.-J. Jang, A. P. Mehr, G. A. Hamilton, L. A. McPartlin, S. Chung, K.-Y. Suh, et al., "Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment," Integrative Biology, vol. 5, pp. 1119-1129, 2013.
[26] K. J. Jang and K. Y. Suh, "A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells," Lab on a Chip, vol. 10, pp. 36-42, 2010.
[27] S. Chung, R. Sudo, P. J. Mack, C.-R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab on a Chip, vol. 9, pp. 269-275, 2009.
[28] M. B. Byrne, L. Trump, A. V. Desai, L. B. Schook, H. R. Gaskins, and P. J. Kenis, "Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling," Biomicrofluidics, vol. 8, p. 044104, 2014.
[29] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nature reviews Molecular cell biology, vol. 7, p. 211, 2006.
[30] Y.-H. Hsu, M. L. Moya, P. Abiri, C. C. Hughes, S. C. George, and A. P. Lee, "Full range physiological mass transport control in 3D tissue cultures," Lab on a chip, vol. 13, pp. 81-89, 2013.
[31] S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, et al., "Engineering vascularized skeletal muscle tissue," Nature biotechnology, vol. 23, p. 879, 2005.
[32] X. Mu, W. F. Zheng, L. Xiao, W. Zhang, and X. Y. Jiang, "Engineering a 3D vascular network in hydrogel for mimicking a nephron," Lab on a Chip, vol. 13, pp. 1612-1618, 2013.
[33] K. Francis and B. O. Palsson, "Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion," Proceedings of the National Academy of Sciences, vol. 94, pp. 12258-12262, 1997.
[34] C. J. Wang, X. Li, B. Lin, S. Shim, G.-l. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab on a Chip, vol. 8, pp. 227-237, 2008.
[35] J. K. Smith, M. Young, K. Wilson, and S. Craig, "Leptospirosis following a major flood in Central Queensland, Australia," Epidemiology & Infection, vol. 141, pp. 585-590, 2013.
[36] F. Lin, C. M.-C. Nguyen, S.-J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration," Biochemical and biophysical research communications, vol. 319, pp. 576-581, 2004.
[37] C. Belk and V. Borden, "Science for life," ed: San Francisco: Pearson Education, 2007.
[38] A. D. van der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes, "A microfluidic wound-healing assay for quantifying endothelial cell migration," American Journal of Physiology-Heart and Circulatory Physiology, vol. 298, pp. H719-H725, 2010.
[39] B. Mosadegh, W. Saadi, S. J. Wang, and N. L. Jeon, "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients," Biotechnology and bioengineering, vol. 100, pp. 1205-1213, 2008.
[40] W. Saadi, S.-J. Wang, F. Lin, and N. L. Jeon, "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis," Biomedical microdevices, vol. 8, pp. 109-118, 2006.
[41] S.-J. Wang, W. Saadi, F. Lin, C. M.-C. Nguyen, and N. L. Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis," Experimental cell research, vol. 300, pp. 180-189, 2004.
[42] S. Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," Journal of Experimental Medicine, vol. 115, pp. 453-466, 1962.
[43] D. Zicha, G. A. Dunn, and A. F. Brown, "A new direct-viewing chemotaxis chamber," Journal of cell science, vol. 99, pp. 769-775, 1991.
[44] S. Zigmond and J. Hirsch, "Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of a cellderived chemotactic factor. i Exp Med 137: 387, 1973 I 5. Nicola NA: Why do hemopoietic growth factor receptors interact with each other," Immunology Today, vol. 8, p. 134, 1987.
[45] B. G. Chung and J. Choo, "Microfluidic gradient platforms for controlling cellular behavior," Electrophoresis, vol. 31, pp. 3014-3027, 2010.
[46] K. Gupta, D.-H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab on a Chip, vol. 10, pp. 2019-2031, 2010.
[47] T. M. Keenan and A. Folch, "Biomolecular gradients in cell culture systems," Lab on a Chip, vol. 8, pp. 34-57, 2008.
[48] S. Toetsch, P. Olwell, A. Prina-Mello, and Y. Volkov, "The evolution of chemotaxis assays from static models to physiologically relevant platforms," Integrative Biology, vol. 1, pp. 170-181, 2009.
[49] N. L. Jeon, S. K. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of solution and surface gradients using microfluidic systems," Langmuir, vol. 16, pp. 8311-8316, 2000.
[50] N. L. Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature biotechnology, vol. 20, pp. 826-830, 2002.
[51] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device," Lab on a Chip, vol. 5, pp. 401-406, 2005.
[52] J. Ruan, L. Wang, M. Xu, D. Cui, X. Zhou, and D. Liu, "Fabrication of a microfluidic chip containing dam, weirs and gradient generator for studying cellular response to chemical modulation," Materials Science and Engineering: C, vol. 29, pp. 674-679, 2009.
[53] M. Yamada, T. Hirano, M. Yasuda, and M. Seki, "A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing," Lab on a Chip, vol. 6, pp. 179-184, 2006.
[54] J. Atencia, G. A. Cooksey, and L. E. Locascio, "A robust diffusion-based gradient generator for dynamic cell assays," Lab on a Chip, vol. 12, pp. 309-316, 2012.
[55] C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes, "A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics," Lab on a Chip, vol. 9, pp. 545-554, 2009.
[56] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nature reviews Molecular cell biology, vol. 7, pp. 211-224, 2006.
[57] E. Cukierman, R. Pankov, and K. M. Yamada, "Cell interactions with three-dimensional matrices," Current opinion in cell biology, vol. 14, pp. 633-640, 2002.
[58] C. R. Kothapalli, E. Van Veen, S. De Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab on a Chip, vol. 11, pp. 497-507, 2011.
[59] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano letters, vol. 10, pp. 3379-3385, 2010.
[60] C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead, and C. Fischbach, "Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis," Integrative biology, vol. 1, pp. 587-594, 2009.
[61] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, et al., "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proceedings of the National Academy of Sciences, vol. 97, pp. 2408-2413, 2000.
[62] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab on a Chip, vol. 7, pp. 1146-1153, 2007.
[63] C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, and C.-H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab on a Chip, vol. 6, pp. 724-734, 2006.
[64] C.-T. Ho, R.-Z. Lin, R.-J. Chen, C.-K. Chin, S.-E. Gong, H.-Y. Chang, et al., "Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue," Lab on a Chip, vol. 13, pp. 3578-3587, 2013.
[65] M. Daigneault, J. A. Preston, H. M. Marriott, M. K. Whyte, and D. H. Dockrell, "The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages," PloS one, vol. 5, p. e8668, 2010.
[66] S. Srigunapalan, C. Lam, A. R. Wheeler, and C. A. Simmons, "A microfluidic membrane device to mimic critical components of the vascular microenvironment," Biomicrofluidics, vol. 5, p. 013409, 2011.
[67] M. Raasch, K. Rennert, T. Jahn, S. Peters, T. Henkel, O. Huber, et al., "Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions," Biofabrication, vol. 7, p. 015013, 2015.
[68] R. A. Hulse and J. H. Taylor, "Discovery of a pulsar in a binary system," The Astrophysical Journal, vol. 195, pp. L51-L53, 1975.
[69] "Diffusion," Correia Life Science, 2010.
[70] Y. Wu, D. Connors, L. Barber, S. Jayachandra, U. M. Hanumegowda, and S. P. Adams, "Multiplexed assay panel of cytotoxicity in HK-2 cells for detection of renal proximal tubule injury potential of compounds," Toxicology in Vitro, vol. 23, pp. 1170-1178, 2009.
[71] https://www.pinterest.nz/pin/795518721650153128/.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *