帳號:guest(52.15.42.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳奕宏
作者(外文):Chen, Yi-Hong
論文名稱(中文):微流體系統整合場效應電晶體應用於血液循環腫瘤細胞之偵測
論文名稱(外文):A MICROFLUIDIC PLATFORM INTEGRATED WITH FIELD-EFFECT TRANSISTORS FOR DETECTION OF CIRCULATING TUMOR CELLS
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):王玉麟
陳致真
口試委員(外文):Wang, Yu-Lin
Chen, Chih-chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033611
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:76
中文關鍵詞:循環腫瘤細胞適體場效應電晶體微流體
外文關鍵詞:circulating tumor cellaptamerfield-effect transistormicrofluidics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:609
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
循環腫瘤細胞近年來被視為一種有用的生物標記物用以作為癌症的早期偵測,預後以及療效之偵測指標。但是現存的循環腫瘤細胞偵測方法例如免疫螢光色或逆轉錄聚合酶鏈式反應仍然相對的耗時與仰賴專業判讀。在此研究中,我們發展一套整合型微流體平台結合場效應電晶體與細胞收集結構,以達到自動化與高敏感度的循環腫瘤細胞偵測。利用這項成就,可以以對循環腫瘤細胞自動化的進行自血液中的分離,流體力學捕捉,計數與回收。此整合型微流體晶片包含有14組的細胞捕捉微流道 (20 μm×60 μm)並各自配有一個嵌入底板中的場效應電晶體生物感測器。當捕捉到的細胞數量增加時,相對於未捕捉細胞時為基準的電流訊號增益也隨之增加。因此,我們能夠透過量測電流增益的改變達到細胞計數。更重要為,此系統之電訊號能夠區分適體目標細胞與非目標細胞的電流增益差異。總結以上,此微流體系統整合場效應電晶體能夠自動化的抓取並偵測細胞,這使得它能夠應用成為血液循環腫瘤細胞偵測之工具。
Circulating tumor cells (CTCs) have been considered as a useful biomarker for early diagnosis of cancer and prognosis monitoring of cancer treatment. Furthermore, CTCs may make promising clinical impacts on the rising requirement of personalized medicine. However, the existing methods for CTC detection such as immunofluorescence methods or reverse transcription-polymerase chain reaction (RT-PCR) approaches are still relatively time-consuming and labor-intensive. In this work, we therefore developed an automatic microfluidic platform integrated with field-effect transistors (FET) and cell-trapping chambers for achieving sensitive and automatic detection of CTCs. The integrated microfluidic chip contained fourteen independent units for cell trapping and FET sensing, which was composed of a cell trapping chamber (20 μm×60 μm) and a FET biosensor embedded on the epoxy substrate. For the FET signal detection, the current gain was measured successfully, showing an increasing trend with the increasing number of cancer cells captured. It indicates that enumeration of simulated CTCs in blood samples could be achieved in accordance with the signals measured on the FET devices. More importantly, the developed system could distinguish signal difference between target cells and non-target cells. We therefore demonstrated an integrated microfluidic system equipped with FET devices which could automatically capture and detect simulated CTCs. It may be a useful tool for personalized medicine and early cancer diagnosis.
Chapter 1 Introduction 1
1.1 Circulating tumor cells 1
1.2 Biomarker and aptamer 4
1.3 MEMS in biological applications 6
1.3.1 Microfluidic system 6
1.3.2 Hydrodynamic particle trapping in microfluidic devices 7
1.3.3 Field-effect transistor 10
1.4 Motivation and novelty 12
Chapter 2 Theory 18
Chapter 3 Materials and methods 25
3.1 Design of integrated microfluidic chip 25
3.2 Fabrication of CTC trapping microfluidic chip 28
3.2.1 Lithography process 28
3.2.2 Fabrication of FET array embedded on epoxy substrates 30
3.2.3 PDMS casting and chip assembly 31
3.4 Preparation of materials 34
3.4.1 Preparation of cancer cell line HCT-8 34
3.4.2 Preparation of HCT-8-specific aptamer conjugated on magnetic beads 34
3.4.3 Preparation of HCT-8-specific aptamer conjugated on gold surfaces 36
3.5 Numerical simulation 37
3.6 Experimental procedure 39
Chapter 4 Results and discussion 51
4.1 Cells captured by magnetic beads 51
4.2 Numerical simulation of hydrodynamic trapping 53
4.3 Measurement of the height of microchannels. 56
4.4 Hydrodynamic cell trapping 59
4.5 Cell detection utilizing FET sensors 62
4.6 Selectivity test of sensor signals 66
Chapter 5 Conclusions and future prospective 68
5.1 Conclusions 68
5.2 Future prospective 70
References 71
[1] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray, "Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012," International Journal of Cancer, vol. 136, pp. 359-386, 2015.
[2] S. Sleijfer, J. W. Gratama, A. M. Sieuwerts, J. Kraan, J. W. M. Martens, and J. A. Foekens, "Circulating tumour cell detection on its way to routine diagnostic implementation?," European Journal of Cancer, vol. 43, pp. 2645-2650, 2007.
[3] S. de Wit, G. van Dalum, and L. W. M. M. Terstappen, "Detection of Circulating Tumor Cells," Scientifica, vol. 2014, pp. 11, 2014.
[4] M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, "Circulating tumor cells: approaches to isolation and characterization," The Journal of Cell Biology, vol. 192, pp. 373-382, 2011.
[5] Q. Weiyi, Z. Yan, and C. Weiqiang, "Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells," Small, vol. 11, pp. 3850-3872, 2015.
[6] S. Mocellin, U. Keilholz, C. R. Rossi, and D. Nitti, "Circulating tumor cells: the 'leukemic phase' of solid cancers," Trends in Molecular Medicine, vol. 12, pp. 130-139, 2006.
[7] R. Riahi, P. Gogoi, S. Sepehri, Y. Zhou, I. Handique, J. Godsey, and Y. X. Wang, "A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer," International Journal of Oncology, vol. 44, pp. 1870-1878, 2014.
[8] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, vol. 450, pp. 1235-1239, 2007.
[9] C. Alix-Panabieres, H. Schwarzenbach, and K. Pantel, "Circulating tumor cells and circulating tumor DNA," Annual Review of Medicine, vol. 63, pp. 199-215, 2012.
[10] P. Went, M. Vasei, L. Bubendorf, L. Terracciano, L. Tornillo, U. Riede, J. Kononen, R. Simon, G. Sauter, and P. A. Baeuerle, "Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers," British Journal of Cancer, vol. 94, pp. 128-135, 2006.
[11] K. Sefah, D. Shangguan, X. Xiong, M. B. O'Donoghue, and W. Tan, "Development of DNA aptamers using Cell-SELEX," Nature Protocols, vol. 5, pp. 1169-1185, 2010.
[12] D. Van Simaeys, D. Lopez-Colon, K. Sefah, R. Sutphen, E. Jimenez, and W. Tan, "Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX," PLOS One, vol. 5, pp. e13770, 2010.
[13] L. Y. Hung, C. H. Wang, C. Y. Fu, P. Gopinathan, and G. B. Lee, "Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics," Lab on a Chip, vol. 16, pp. 2759-2774, 2016.
[14] Y. J. Che, H. W. Wu, L. Y. Hung, C. A. Liu, H. Y. Chang, K. Wang, and G. B. Lee, "An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells," Biomicrofluidics, vol. 9, pp. 054121, 2015.
[15] L. Y. Hung, C. H. Wang, Y. J. Che, C. Y. Fu, H. Y. Chang, K. Wang, and G. B. Lee, "Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX," Scientific Reports, vol. 5, pp. 10326, 2015.
[16] C. D. Chin, V. Linder, and S. K. Sia, "Commercialization of microfluidic point-of-care diagnostic devices," Lab on a Chip, vol. 12, pp. 2118-2134, 2012.
[17] N. Maluf and K. Williams, An Introduction to Microelectromechanical Systems Engineering. Norwood: Artech House, 2004.
[18] D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annual Review of Biomedical Engineering, vol. 4, pp. 261-286, 2002.
[19] E. Lagally, Microfluidics and Nanotechnology Biosensing to the Single Molecule Limit: CRC Press, 2017.
[20] P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei, A. Wright, and S. Jun, "Robust growth of Escherichia coli," Current Biology, vol. 20, pp. 1099-1103, 2010.
[21] V. Chokkalingam, J. Tel, F. Wimmers, X. Liu, S. Semenov, J. Thiele, C. G. Figdor, and W. T. Huck, "Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics," Lab on a Chip, vol. 13, pp. 4740-4744, 2013.
[22] J. Pelletier, K. Halvorsen, B.-Y. Ha, R. Paparcone, S. J. Sandler, C. L. Woldringh, W. P. Wong, and S. Jun, "Physical manipulation of the Escherichia coli chromosome reveals its soft nature," Proceedings of the National Academy of Sciences, vol. 109, pp. 2649-2656, 2012.
[23] J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, "Review of cell and particle trapping in microfluidic systems," Analytica Chimica Acta, vol. 649, pp. 141-157, 2009.
[24] V. Narayanamurthy, S. Nagarajan, A. Y. F. Khan, F. Samsuri, and T. M. Sridhar, "Microfluidic hydrodynamic trapping for single cell analysis: mechanisms, methods and applications," Analytical Methods, vol. 9, pp. 3751-3772, 2017.
[25] D. Di Carlo, N. Aghdam, and L. P. Lee, "Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays," Analytical Chemistry, vol. 78, pp. 4925-4930, 2006.
[26] A. Ahmad Khalili, M. Ahmad, M. Takeuchi, M. Nakajima, Y. Hasegawa, and R. Mohamed Zulkifli, "A Microfluidic Device for Hydrodynamic Trapping and Manipulation Platform of a Single Biological Cell," Applied Sciences, vol. 6, pp. 40, 2016.
[27] Y. D. Ma, K. Luo, W. H. Chang, and G. B. Lee, "A microfluidic chip capable of generating and trapping emulsion droplets for digital loop-mediated isothermal amplification analysis," Lab on a Chip, vol. 18, pp. 296-303, 2018.
[28] Y. L. Wang, B. H. Chu, K. H. Chen, C. Y. Chang, T. P. Lele, G. Papadi, J. K. Coleman, B. J. Sheppard, C. F. Dungen, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and F. Ren, "Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 94, pp. 243901, 2009.
[29] C. C. Huang, G. Y. Lee, J. I. Chyi, H. T. Cheng, C. P. Hsu, Y. R. Hsu, C. H. Hsu, Y. F. Huang, Y. C. Sun, C. C. Chen, S. S. Li, J. A. Yeh, D. J. Yao, F. Ren, and Y. L. Wang, "AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study," Biosensors and Bioelectronics, vol. 41, pp. 717-722, 2013.
[30] A. K. Pulikkathodi, I. Sarangadharan, Y. H. Chen, G. Y. Lee, J. I. Chyi, G. B. Lee, and Y. L. Wang, "Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor," Lab on a Chip, vol. 18, pp. 1047-1056, 2018.
[31] U. Andergassen, A. C. Kolbl, S. Mahner, and U. Jeschke, "Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients," Oncology Reports, vol. 35, pp. 1905-1915, 2016.
[32] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfluidic system for dynamic microarray applications," Proceedings of the National Academy of Sciences, vol. 104, pp. 1146-1151, 2007.
[33] S. C. Tsai, L. Y. Hung, and G. B. Lee, "An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods," Biomicrofluidics, vol. 11, pp. 034122, 2017.
[34] Data sheet for NANOTM SU-8 negative tone photoresist, formulations 3000 series, released by MICRO-CHEM. Corp.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *