|
1. Taylor, D.D., S. Akyol, and C. Gercel-Taylor, Pregnancy-associated exosomes and their modulation of T cell signaling. The Journal of Immunology, 2006. 176(3): p. 1534-1542. 2. Pisitkun, T., R.-F. Shen, and M.A. Knepper, Identification and proteomic profiling of exosomes in human urine. Proceedings of the national academy of sciences of the United States of America, 2004. 101(36): p. 13368-13373. 3. Admyre, C., et al., Direct exosome stimulation of peripheral humanT cells detected by ELISPOT. European journal of immunology, 2006. 36(7): p. 1772-1781. 4. Vlassov, A.V., et al., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012. 1820(7): p. 940-948. 5. Robbins, P.D. and A.E. Morelli, Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology, 2014. 14(3): p. 195-208. 6. Del Conde, I., et al., Tissue-factor–bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): p. 1604-1611. 7. Gatti, S., et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury. Nephrology Dialysis Transplantation, 2011. 26(5): p. 1474-1483. 8. Skog, J., et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 2008. 10(12): p. 1470-1476. 9. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences, 2011. 68(16): p. 2667-2688. 10. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences, 2016. 113(8): p. E968-E977. 11. Heijnen, H.F., et al., Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived From Exocytosis of Multivesicular Bodies and-Granules. Blood, 1999. 94(11): p. 3791-3799. 12. Van Deun, J., et al., The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of extracellular vesicles, 2014. 3(1): p. 24858. 13. Colombo, M., et al., Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013: p. jcs. 128868. 14. Witwer, K.W., et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of extracellular vesicles, 2013. 2(1): p. 20360. 15. Théry, C., et al., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology, 2006: p. 3.22. 1-3.22. 29. 16. György, B., et al., Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood, 2011. 117(4): p. e39-e48. 17. Chen, C., et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a chip, 2010. 10(4): p. 505-511. 18. Tang, Y.-T., et al., Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International journal of molecular medicine, 2017. 40(3): p. 834-844. 19. 太鼎生物科技公司. 什麼是中空纖維膜?TFF切向流過濾簡易說明. Available from: http://biopioneer.com.tw/?news=hollow_fiber_introduction. 20. Vergauwen, G., et al., Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Scientific Reports, 2017. 7. 21. Batrakova, E.V. and M.S. Kim, Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release, 2015. 219: p. 396-405. 22. Shin, S., et al., Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Scientific reports, 2017. 7(1): p. 9907. 23. 國家實驗研究院. Electron Beam Lithography. 2005; Available from: https://www.itrc.narl.org.tw/Research/Product/Nano/ebeam.php. 24. 莊榮輝. 電泳檢定法. 2000; Available from: http://juang.bst.ntu.edu.tw/ECX/Ana3.htm. 25. Jelínek, M. METHODS FOR STUDYING OF PROTEINS. Available from: http://slideplayer.com/slide/4366457/. 26. McMaster, G.K. and G.G. Carmichael, Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proceedings of the National Academy of Sciences, 1977. 74(11): p. 4835-4838. 27. Holmes, D.L. and N.C. Stellwagen, The electric field dependence of DNA mobilities in agarose gels: A reinvestigation. Electrophoresis, 1990. 11(1): p. 5-15. 28. Rouser, G., S. Fleischer, and A. Yamamoto, Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids, 1970. 5(5): p. 494-496. 29. Maas, S.L., J. De Vrij, and M.L. Broekman, Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. Journal of visualized experiments: JoVE, 2014(92). 30. Schwartz, D.C. and C.R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. cell, 1984. 37(1): p. 67-75. 31. 曾福生, 余俊欣, and 林金榮. 淺談脈衝式凝膠電泳技術. Available from: http://www.tfrin.gov.tw/dl.asp?fileName=20091020-111445_14%E6%B7%BA%E8%AB%87%E8%84%88%E8%A1%9D%E5%BC%8F%E5%87%9D%E8%86%A0%E9%9B%BB%E6%B3%B3%E6%8A%80%E8%A1%93.pdf. 32. Hsiao, Y.-H., et al., Continuous microfluidic assortment of interactive ligands (CMAIL). Scientific Reports, 2016. 6(1). 33. Dragovic, R.A., et al., Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(6): p. 780-788. 34. Gardiner, C., et al., Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. Journal of extracellular vesicles, 2013. 2(1): p. 19671. 35. De Vrij, J., et al., Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine, 2013. 8(9): p. 1443-1458. 36. Nolte, E.N., et al., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(5): p. 712-720. 37. Nanoparticle Tracking Analysis. Available from: http://www.malvern.com/en/products/technology/nanoparticle-tracking-analysis/. 38. Maas, S.L., et al., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015. 200: p. 87-96. 39. 「サイズ」「濃度」「表面電荷量」「粒子間相互作用」を計測. Available from: http://www.meiwafosis.com/products/nanoparticle/nanoparticle_tokucho.html#genri. 40. Pol, E., et al., Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Journal of Thrombosis and Haemostasis, 2014. 12(7): p. 1182-1192. 41. Willmott, G., et al., Actuation of tunable elastomeric pores: Resistance measurements and finite element modelling. Experimental Mechanics, 2014. 54(2): p. 153-163. 42. Scientific, T.F., Overview of ELISA. 43. Kim, D.-k., et al., Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proceedings of the National Academy of Sciences, 2016. 113(1): p. 170-175. 44. TSA Systems for Immunohistochemistry and In Situ Hybridization. Available from: http://www.blossombio.com/products/TSASystemsforImmunohistochemistryandInSituHybridization.html.
|