帳號:guest(18.188.18.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗遠
作者(外文):Lee, Tsung-Yuan
論文名稱(中文):第一原理研究鈣鈦礦材料太陽能轉換極限效率與顯示器光譜
論文名稱(外文):First Principles Investigation on the Solar Conversion Efficiency Limit and Display Optical Properties of Hybrid Perovskites
指導教授(中文):洪哲文
指導教授(外文):Hong, Che-Wun
口試委員(中文):趙怡欽
陳玉彬
張博凱
口試委員(外文):Chao, Yei-Chin
Chen, Yu-Bin
Chang, Bor-Kae
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033605
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:98
中文關鍵詞:第一原理鈣鈦礦太陽能轉換極限效率
外文關鍵詞:First-PrinciplesPerovskiteSolar Conversion Efficiency Limit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:145
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用量子理論計算與分析有機-無機混合鈣鈦礦太陽能材料(organic-inorganic hybrid perovskite)的光電轉換極限效率。鈣鈦礦是近年備受矚目的綠能材料,可做太陽能電池光吸收層,除便宜外其他優點極多,例如:光學吸收係數高、載子等效質量低、載子擴散長度增大、載子遷移率高、功率轉換效率可能增高、製作簡易及成本低廉...等特點。
本研究先以CH3NH3PbI3(亦即MAPbI3)鈣鈦礦作為基線材料,予以更改分子結構,嘗試改良性質。研究利用第一原理(First Principles)密度泛函理論(Density Functional Theory, DFT)模擬計算四方晶與立方晶型鈣鈦礦半導體礦石材料,建立單位晶胞模型後,再以平面波基底、Kohn-Sham定理、廣義梯度近似法(GGA)、交換相關勢能PBE以及自洽場(SCF)方法進行幾何結構最佳化。並透過電子能帶結構圖及電子態密度圖分析固態材料的能隙及光學性質,包含材料的複數相對介電常數、複數折射率、消光係數、反射率及吸收係數...等光學性質。
本研究進一步利用激發態熱力學觀點,計算MAPbI3的熵損失能量、焓、內能、化學勢能及光電轉換理論極限效率。研究中發現隨著溫度上升,熵損失的能量越多導致光電轉換效率降低,當溫度上升至300K每對電子電洞有0.27221 eV熵損失,其功率轉換效率剩下29.5%。第三部分本研究探討ABX3鈣鈦礦組成對能隙及吸收光譜之影響,十二種四方晶鈣鈦礦包含MAPbI3、MAPbCl3、MAPbBr3、MASnI3、MASnCl3、MASnBr3、FAPbI3、FAPbCl3、FAPbBr3、FASnI3、FASnCl3及FASnBr3,從中發現立方晶MAPbI3較四方晶MAPbI3呈微藍位移、有機陽離子(A=MA/FA),FABX3較MABX3呈微紅位移、金屬陽離子(B= Pb2+/Sn2+),ASnX3較APbX3呈微紅位移,以及鹵素陰離子(X=Cl/Br/I)隨著電負度增加(Cl>Br>I)呈顯著藍位移。故經適當調整能隙,鈣鈦礦亦可作為顯示器新型材料。

This thesis employed theoretical quantum mechanics to analyze photoelectric properties of organic-inorganic hybrid perovskite materials, which have attracted much attention on the photovoltaic (PV) devices in recent years. This is due to their exceptional advantages such as high optical absorption coefficient, low carrier masses, long diffusion length, high carrier mobility, maybe higher power conversion efficiency, and finally process simplicity and low fabrication cost.
The first part of this research employs the first-principles calculations to investigate the properties of the tetragonal and cubic structured MAPbI3 (CH3NH3PbI3) perovskites. Kohn-Sham density functional theory (DFT), exchange correlation functional (by Perdew et al), and plane wave basis with self-consistent field method were all employed. Solid state optical properties such as complex relative dielectric constant, complex refractive index, extinction coefficient, reflectivity, and absorption coefficient are presented.
The second part of this research adopted thermodynamics perceptions to evaluate the entropic loss energy, the enthalpy, internal energy and the chemical potential of the MAPbI3. Raising temperature will cause entropy more loss and decrease the power conversion efficiency (PCE). When temperature reaches 300K, the entropic loss of the electron-hole pair is 0.27221 eV, and the PCE lowers to 29.5%. Finally, the third part of this research varies the composition of the ABX3 into MAPbI3, MAPbCl3, MAPbBr3, MASnI3, MASnCl3, MASnBr3, FAPbI3, FAPbCl3, FAPbBr3, FASnI3, FASnCl3 and FASnBr3. Bandgaps were calculated and found that by proper trimming of the composition, the hybrid organic-inorganic perovskite materials can also be a potential display material in the near future.
摘要........................................................I
Abstract...................................................II
致謝......................................................III
目錄.......................................................IV
圖目錄.....................................................VI
表目錄.....................................................IX
符號定義....................................................X
第一章 緒論.................................................1
1.1. 太陽能電池發展簡介...................................1
1.2. 有機無機鈣鈦礦太陽能電池簡介..........................6
1.3. 鈣鈦礦太陽能電池發展文獻回顧.........................10
1.4. 最大理論效率計算文獻回顧............................11
1.5. 研究方法與目的.....................................12
第二章 計算量子力學與固態物理................................13
2.1. Schrödinger’s equation............................13
2.2. 密度泛函理論.......................................14
2.2.1. Kohn-Sham定理......................................16
2.2.2. 自洽場計算.........................................18
2.2.3. 交換相關泛函.......................................20
2.2.4. 贋勢..............................................22
2.3. 電子能帶理論.......................................24
2.4. 有效質量...........................................26
2.5. 激發態半導體熱力學..................................29
第三章 模擬方法與模型建構...................................38
3.1. 模擬方法與計算流程..................................38
3.2. 模擬工具...........................................40
3.3. 立方晶型MAPbI3鈣鈦礦之模型建構......................40
3.4. 四方晶型鈣鈦礦之模型建構............................44
3.4.1. MAPbI3_t鈣鈦礦之模型建構............................44
3.4.2. MAPbCl3_t鈣鈦礦之模型建構...........................47
3.4.3. MAPbBr3_t鈣鈦礦之模型建構...........................49
3.4.4. MASnI3_t鈣鈦礦之模型建構............................51
3.4.5. MASnCl3_t鈣鈦礦之模型建構...........................53
3.4.6. MASnBr3_t鈣鈦礦之模型建構...........................55
3.4.7. FAPbI3_t鈣鈦礦之模型建構............................57
3.4.8. FAPbCl3_t鈣鈦礦之模型建構...........................59
3.4.9. FAPbBr3_t鈣鈦礦之模型建構...........................61
3.4.10. FASnI3_t鈣鈦礦之模型建構............................63
3.4.11. FASnCl3_t鈣鈦礦之模型建構...........................65
3.4.12. FASnBr3_t鈣鈦礦之模型建構...........................67
第四章 結果與討論...........................................69
4.1. 立方晶型MAPbI3之電子能帶結構與態密度.................69
4.2. 四方晶與立方晶MAPbI3之光學性質.......................72
4.3. 四方晶與立方晶MAPbI3之激發態熱力學性質與理論極限效率...77
4.4. 四方晶型鈣鈦礦之電子能帶結構、態密度與能隙.............80
4.5. 四方晶型鈣鈦礦之光學性質.............................87
第五章 結論與未來工作建議....................................92
5.1. 結論...............................................92
5.2. 未來工作建議........................................94
參考文獻....................................................95

[1] M. A. Green, "Solar cells: operating principles, technology, and system applications," 1982.
[2] A. G. Aberle, "Surface passivation of crystalline silicon solar cells: A review," (in English), Progress in Photovoltaics, vol. 8, no. 5, pp. 473-487, Sep-Oct 2000.
[3] Best Research-Cell Efficiencies. Available: https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[4] M. A. Green et al., "Solar cell efficiency tables (version 50)," (in English), Progress in Photovoltaics, vol. 25, no. 7, pp. 668-676, Jul 2017.
[5] F. E. Osterloh, "Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy," (in English), Journal of Physical Chemistry Letters, vol. 5, no. 19, pp. 3354-3359, Oct 2 2014.
[6] E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, "Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells," (in English), Nature Communications, vol. 5, Mar 2014.
[7] Q. F. Dong et al., "Electron-hole diffusion lengths > 175 mu m in solution-grown CH3NH3PbI3 single crystals," (in English), Science, vol. 347, no. 6225, pp. 967-970, Feb 27 2015.
[8] T. Q. Zhao, W. Shi, J. Y. Xi, D. Wang, and Z. G. Shuai, "Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles (vol 6, 9968, 2017)," (in English), Scientific Reports, vol. 7, Apr 5 2017.
[9] A. Miyata et al., "Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites," (in English), Nature Physics, vol. 11, no. 7, pp. 582-U94, Jul 2015.
[10] K. Galkowski et al., "Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors," (in English), Energy & Environmental Science, vol. 9, no. 3, pp. 962-970, 2016.
[11] T. Oku, "Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells," in Solar Cells-New Approaches and Reviews: InTech, 2015.
[12] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," (in English), Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-+, May 6 2009.
[13] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," (in English), Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[14] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," (in English), Science, vol. 338, no. 6107, pp. 643-647, Nov 2 2012.
[15] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[16] J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, "High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC (NH2) 2PbI3," Advanced Materials, vol. 26, no. 29, pp. 4991-4998, 2014.
[17] N. Pellet et al., "Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting," Angewandte Chemie International Edition, vol. 53, no. 12, pp. 3151-3157, 2014.
[18] J. H. Heo et al., "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature photonics, vol. 7, no. 6, pp. 486-491, 2013.
[19] H. S. Kim et al., "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," (in English), Scientific Reports, vol. 2, Aug 21 2012.
[20] N. Onodayamamuro, T. Matsuo, and H. Suga, "Calorimetric and Ir Spectroscopic Studies of Phase-Transitions in Methylammonium Trihalogenoplumbates-(Ii)," (in English), Journal of Physics and Chemistry of Solids, vol. 51, no. 12, pp. 1383-1395, 1990.
[21] A. Poglitsch and D. Weber, "Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy," The Journal of chemical physics, vol. 87, no. 11, pp. 6373-6378, 1987.
[22] K. P. Ong, T. W. Goh, Q. Xu, and A. Huan, "Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3," (in English), Journal of Physical Chemistry A, vol. 119, no. 44, pp. 11033-11038, Nov 5 2015.
[23] W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
[24] G. E. Eperon et al., "Perovskite-perovskite tandem photovoltaics with optimized band gaps," Science, vol. 354, no. 6314, pp. 861-865, 2016.
[25] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, no. 3, pp. 510-519, 1961.
[26] W. Ruppel and P. Wurfel, "Upper limit for the conversion of solar energy," IEEE Transactions on Electron Devices, vol. 27, no. 4, pp. 877-882, 1980.
[27] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," Phys Rev B Condens Matter, vol. 45, no. 23, pp. 13244-13249, Jun 15 1992.
[28] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, no. 18, p. 3865, 1996.
[29] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and J. Joannopoulos, "Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients," Reviews of modern physics, vol. 64, no. 4, p. 1045, 1992.
[30] Solid State Electronic Band Structure. Available: https://commons.wikimedia.org/wiki/File:Solid_state_electronic_band_structure.svg
[31] Material Studio. Available: http://accelrys.com/products/collaborative-science/biovia-materials-studio/
[32] M. Segall et al., "First-principles simulation: ideas, illustrations and the CASTEP code," Journal of Physics: Condensed Matter, vol. 14, no. 11, p. 2717, 2002.
[33] S. J. Clark et al., "First principles methods using CASTEP," Zeitschrift für Kristallographie-Crystalline Materials, vol. 220, no. 5/6, pp. 567-570, 2005.
[34] Crystal structures of halide perovskites. Available: https://github.com/WMD-group/hybrid-perovskites
[35] Y. Kawamura, H. Mashiyama, and K. Hasebe, "Structural study on cubic–tetragonal transition of CH3NH3PbI3," Journal of the Physical Society of Japan, vol. 71, no. 7, pp. 1694-1697, 2002.
[36] K. P. Ong, T. W. Goh, Q. Xu, and A. Huan, "Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3," The Journal of Physical Chemistry A, vol. 119, no. 44, pp. 11033-11038, 2015.
[37] T. Baikie et al., "Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, no. 18, pp. 5628-5641, 2013.
[38] Y. Ye, X. Run, X. Hai-Tao, H. Feng, X. Fei, and W. Lin-Jun, "Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations," Chinese Physics B, vol. 24, no. 11, p. 116302, 2015.
[39] F. Hao, C. C. Stoumpos, R. P. Chang, and M. G. Kanatzidis, "Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells," Journal of the American Chemical Society, vol. 136, no. 22, pp. 8094-8099, 2014.
[40] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes," Applied Physics Express, vol. 7, no. 3, p. 032302, 2014.
[41] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
[42] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, and J. Huang, "Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination," Nature Photonics, vol. 9, no. 10, pp. 679-686, 2015.
[43] D. M. Jang, D. H. Kim, K. Park, J. Park, J. W. Lee, and J. K. Song, "Ultrasound synthesis of lead halide perovskite nanocrystals," Journal of Materials Chemistry C, vol. 4, no. 45, pp. 10625-10629, 2016.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *