帳號:guest(18.225.57.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳芃君
作者(外文):Chen, Peng-Jyun
論文名稱(中文):利用氣膠沉積法改善基於壓電薄膜製成之光學掃描顯微鏡
論文名稱(外文):Development of an Optical Scanning Microscope Based on PZT Thin Film Fabricated with Aerosol Deposition
指導教授(中文):王威智
指導教授(外文):Wang, Wei-Chih
口試委員(中文):陳致真
吳文中
吳軍緯
口試委員(外文):Chen, Chih-Chen
Wu, Wen-Jong
Wu, Chun-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033595
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:106
中文關鍵詞:微機電壓電陶瓷材料致動器氣膠沉積法
外文關鍵詞:MEMSPiezoelectric (PZT)ActuatorAerosol Deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
利用鋯鈦酸鉛壓電陶瓷薄膜製成之壓電微型致動器,將其應用於定位控制與驅動元件,此微型致動器於現今之微照明與掃描裝置系統中應用極為廣泛與普及。本研究為利用新型快速氣膠沉積法改善二維掃描器之製程方法。該設計採用氣膠沉積法將壓電陶瓷粉末沉積於不銹鋼基板上,此製程優勢在於可以實現廉價、簡單、快速,並且於室溫中即可製備高質量之壓電薄膜。本文所提及之致動器是利用氣膠沉積法將厚度為5μm之壓電薄膜沉積於厚度為100μm的不銹鋼基板上。此致動器之特色為其具有高穩定的線性振動和頻率響應,並且此壓電致動器之掃描裝置將應用於一次性內視鏡裝置系統之開發,因其優勢為高解析度與低成本。不僅如此,為了優化掃描儀的解析度與掃描之視野,利用ANSYS模擬找出最佳之共振頻率與掃描之偏轉角度。利用阻抗分析、共振頻率與結構模態分析,得到微型致動器之性能與特性,並且將模擬之數據與實驗之結果進行比對分析,最後於結論討論了此研究中發現的問題,並提出了改進方案,將其應用發揮最大化。
Piezo devices made of lead-zirconium-titanate (PZT) are utilized in driving mechanical devices for positioning control and vibration actuation and have found contemporary application in micro- illuminating and scanning devices. This paper presents a new rapid prototyped PZT actuator for 2D scanner applications. This design uses a novel method of directly depositing a thin PZT film on stainless steel by aerosol deposition (AD). The AD method enables inexpensive, simple, quick, room temperature fabrication of high-quality PZT films. The proposed actuator deposits a 5-μm thick PZT film onto a 100 μm thick stainless-steel substrate by using an AD method. The features of the actuators are a stable linear vibration and frequency response. The proposed PZT actuated scanning device would be attractive for the development of disposable endoscopic devices, as it would be both high-resolution and inexpensive to produce. To optimize the line resolution and field of view of the scanner, ANSYS simulations are performed to determine the optimal operating frequencies and deflection angles. Fabrication results, electrical impedance, and mechanical response of the actuator and optical performance of the tapered waveguide scanner are presented, and results are compared with experiment. Problems found in these preliminary studies are discussed, and resolutions and improvement are proposed.
Tables of Contents
摘要---------I
Abstract---------II
Acknowledgment---------III
List of Figure--------2
List of Table--------7
Chapter 1. Introduction-----8
1.1 Overview-------9
1.2 Motivation--------11
Chapter 2. Design and Working Principle--------14
2.1 Design Consideration---------16
2.2 Operating Principle-----------19
2.3 Scanner Mechanical Simulation--------21
Chapter 3. Device Fabrication and Characterization-------37
3.1 PZT Actuator Fabrication---------37
3.1.1 Aerosol Deposition--------37
3.1.2 Device Fabrication Flow--------40
3.1.3 Fabrication Process of Taper Fiber Etching-------44
3.1.4 Results and Discussion---------50
Chapter 4. Electromagnetic and Mechanical Characterization of PZT Scanner---------60
4.1 Electrical and Mechanical Performance--------60
Chapter 5. Conclusion---------85
Bibliography--------86
List of Abbreviations--------92
Appendix A: Piezoelectric Scanner Microfabrication Process Flow--------94
Appendix B: Fabrication of Waveguide: Fiber Etching Process Flow------100
Appendix C: PZT Actuator Frequency Response and Displacement Measurement------102
[1] K. E. Petersen, "Silicon torsional scanning mirror," vol. 24, no. 5, pp. 631-637, 1980.
[2] W. Piyawattanametha et al., "3-D near-infrared fluorescence imaging using an MEMS-based miniature dual-axis confocal microscope," vol. 15, no. 5, pp. 1344-1350, 2009.
[3] U. Hofmann, F. Senger, F. Soerensen, V. Stenchly, B. Jensen, and J. Janes, "Biaxial resonant 7mm-MEMS mirror for automotive LIDAR application," in 2012 International Conference on Optical MEMS and Nanophotonics, 2012, pp. 150-151: IEEE.
[4] L. J. Hornbeck, "Digital light processing and MEMS: reflecting the digital display needs of the networked society," in Micro-optical Technologies for Measurement, Sensors, and Microsystems, 1996, vol. 2783, pp. 2-14: International Society for Optics and Photonics.
[5] Ç. Ataman, S. Lani, W. Noell, and N. De Rooij, "A dual-axis pointing mirror with moving-magnet actuation," vol. 23, no. 2, p. 025002, 2012.
[6] K. H. Gilchrist, D. E. Dausch, and S. Grego, "Electromechanical performance of piezoelectric scanning mirrors for medical endoscopy," vol. 178, pp. 193-201, 2012.
[7] Y. Pan, H. Xie, and G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," vol. 26, no. 24, pp. 1966-1968, 2001.
[8] D. Neilson et al., "Fully provisioned 112 x 112 micro-mechanical optical crossconnect with 35.8 Tb/s demonstrated capacity," in Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol. 37 (IEEE Cat. No. 00CH37079), 2000, vol. 4, pp. 202-204: IEEE.
[9] K. Isamoto et al., "A high speed MEMS scanner for 140-kHz SS-OCT," in 16th international conference on optical MEMS and nanophotonics, 2011, pp. 73-74: IEEE.
[10] W. O. Davis et al., "High-performance silicon scanning mirror for laser printing," in MOEMS and Miniaturized Systems VI, 2007, vol. 6466, p. 64660D: International Society for Optics and Photonics.
[11] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, "Lucent Microstar micromirror array technology for large optical crossconnects," in MOEMS and Miniaturized Systems, 2000, vol. 4178, pp. 320-325: International Society for Optics and Photonics.
[12] D. L. Dickensheets, "A microfabricated scanning confocal optical microscope for in situ imaging," 1998.
[13] D. Dickensheets and G. Kino, "Micromachined scanning confocal optical microscope," vol. 21, no. 10, pp. 764-766, 1996.
[14] A. P. Neukermans and T. G. Slater, "Micromachined torsional scanner," ed: Google Patents, 1997.
[15] J. T. Liu et al., "Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery," vol. 15, no. 2, p. 026029, 2010.
[16] M. K. Hedili, M. O. Freeman, and H. Urey, "Microstructured head-up display screen for automotive applications," in Micro-Optics 2012, 2012, vol. 8428, p. 84280X: International Society for Optics and Photonics.
[17] M. O. Freeman, "Miniature high-fidelity displays using a biaxial MEMS scanning mirror," in MOEMS Display and Imaging Systems, 2003, vol. 4985, pp. 56-63: International Society for Optics and Photonics.
[18] H. Urey, D. W. Wine, and J. R. Lewis, "Scanner design and resolution trade-offs for miniature scanning displays," in Flat Panel Display Technology and Display Metrology, 1999, vol. 3636, pp. 60-69: International Society for Optics and Photonics.
[19] P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, "Scanning micromirrors: an overview," in Optomechatronic Micro/Nano Components, Devices, and Systems, 2004, vol. 5604, pp. 195-208: International Society for Optics and Photonics.
[20] D. L. Dickensheets and G. S. Kino, "Silicon-micromachined scanning confocal optical microscope," vol. 7, no. 1, pp. 38-47, 1998.
[21] M.-H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, "Surface-micromachined electrostatic-comb driven scanning micromirrors for barcode scanners," in Proceedings of Ninth International Workshop on Micro Electromechanical Systems, 1996, pp. 192-197: IEEE.
[22] M. Ikeda et al., "Two dimensional silicon micromachined optical scanner integrated with photo detector and piezoresistor," in Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS'95, 1995, vol. 1, pp. 293-296: IEEE.
[23] Y. Gokdel, B. Sarioglu, S. Mutlu, and A. Yalcinkaya, "Design and fabrication of two-axis micromachined steel scanners," vol. 19, no. 7, p. 075001, 2009.
[24] H. Miyajima et al., "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," vol. 12, no. 3, pp. 243-251, 2003.
[25] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, "Two-axis electromagnetic microscanner for high resolution displays," vol. 15, no. 4, pp. 786-794, 2006.
[26] C. Lee, "Design and fabrication of epitaxial silicon micromirror devices," vol. 115, no. 2-3, pp. 581-590, 2004.
[27] J.-c. Tsai, T.-l. Hsieh, S.-j. Chiou, D. Hah, and M. C. Wu, "Experimental characterization of two-axis MEMS scanners with hidden radial vertical combdrive actuators and cross-bar spring structures," vol. 19, no. 4, p. 045002, 2009.
[28] L. Wu and H. Xie, "Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging," vol. 8, no. 1, p. 013030, 2009.
[29] L. Li, M. Begbie, G. Brown, and D. Uttamchandani, "Design, simulation and characterization of a MEMS optical scanner," vol. 17, no. 9, p. 1781, 2007.
[30] J. Singh, T. Gan, A. Agarwal, and S. Liw, "3D free space thermally actuated micromirror device," vol. 123, pp. 468-475, 2005.
[31] J.-H. Park, J. Akedo, and H. Sato, "High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method," vol. 135, no. 1, pp. 86-91, 2007.
[32] Y. Yasuda, M. Akamatsu, M. Tani, T. Iijima, and H. Toshiyoshi, "Piezoelectric 2D-optical micro scanners with PZT thick films," vol. 76, no. 1, pp. 81-91, 2005.
[33] M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, "A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator," in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), 2007, pp. 699-702: IEEE.
[34] F. Filhol, E. Defay, C. Divoux, C. Zinck, and M.-T. Delaye, "Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning," vol. 123, pp. 483-489, 2005.
[35] A. Schroth, C. Lee, S. Matsumoto, M. Tanaka, and R. Maeda, "Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners," in Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176, 1998, pp. 402-407: IEEE.
[36] R. A. Conant and R. S. Muller, "Cyclic fatigue testing of surface-micromachined thermal actuators," in ASME Internation Mechanical Engineering Congress and Exposition, 1998, pp. 15-20.
[37] R. Maeda, J. Tsaur, S. Lee, and M. Ichiki, "Piezoelectric microactuator devices," vol. 12, no. 1-2, pp. 89-100, 2004.
[38] S. Trolier-McKinstry and P. Muralt, "Thin film piezoelectrics for MEMS," vol. 12, no. 1-2, pp. 7-17, 2004.
[39] W.-C. Wang and C.-L. Tsui, "Two-dimensional mechanically resonating fiber optic scanning display system," vol. 49, no. 9, p. 097401, 2010.
[40] W.-C. Wang and P. G. Reinhall, "Scanning polymeric waveguide design of a 2-D display system," vol. 4, no. 1, pp. 28-38, 2008.
[41] S. Khanna, J. N. Ho, J. Irwen, and W. C. Wang, "Diamagnetically levitating three phase motor with optical feedback control," vol. 4, no. 4, pp. 424-448, 2010.
[42] K. Gu, K.-R. Lin, and W.-C. Wang, "PZT-actuated, 2D optical scanning image acquisition," in Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 2014, vol. 9060, p. 906018: International Society for Optics and Photonics.
[43] W.-C. Wang, M. Fauver, J. N. Ho, E. J. Seibel, and P. G. Reinhall, "Micromachined optical waveguide cantilever as a resonant optical scanner," vol. 102, no. 1-2, pp. 165-175, 2002.
[44] W.-J. Wu, Y.-Y. Chen, B.-S. Lee, J.-J. He, and Y.-T. Peng, "Tunable resonant frequency power harvesting devices," in Smart Structures and Materials 2006: Damping and Isolation, 2006, vol. 6169, p. 61690A: International Society for Optics and Photonics.
[45] M. Koch, N. Harris, A. Evan, N. White, and A. Brunnschweiler, "Screen printing of thick piezoelectric PZT layers onto silicon micromachined membranes," 1997.
[46] T. Lilliehorn and S. Johansson, "Fabrication of multilayer 2D ultrasonic transducer microarrays by green machining," vol. 14, no. 5, p. 702, 2004.
[47] M. Koch, A. Evans, and A. Brunnschweiler, "The dynamic micropump driven with a screen printed PZT actuator," vol. 8, no. 2, p. 119, 1998.
[48] T. Kobayashi, J. Tsaur, M. Ichiki, and R. Maeda, "Fabrication and performance of a flat piezoelectric cantilever obtained using a sol–gel derived PZT thick film deposited on a SOI wafer," vol. 15, no. 1, p. S137, 2005.
[49] Y.-C. Hsu, C.-C. Wu, C.-C. Lee, G. Cao, and I. Shen, "Demonstration and characterization of PZT thin-film sensors and actuators for meso-and micro-structures," vol. 116, no. 3, pp. 369-377, 2004.
[50] Y. Jeon, R. Sood, L. Steyn, and S.-G. Kim, "Energy harvesting MEMS devices based on d33 mode piezoelectric Pb (Zr, Ti) O3 thin film cantilever," in CIRP Seminar on Micro and Nano Technology, 2003.
[51] S. H. Lee, M. K. Ryu, J. P. Kim, S. R. Kim, J. Y. Heo, and M. S. Jang, "Ferroelectric properties of PZT thin films deposited on ZnO/Si substrates," vol. 42, no. Suppl., pp. 1105-1107, 2003.
[52] W.-S. Hua, W.-C. Wang, W.-J. Wu, C. Leung Tsui, W. Cui, and W.-P. Shih, "Development of 2D microdisplay using an integrated microresonating waveguide scanning system," vol. 22, no. 14, pp. 1613-1622, 2011.
[53] C.-S. Huang and W.-C. Wang, "Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding," vol. 47, no. 25, pp. 4540-4547, 2008.
[54] K. Gu, C. L. Tsui, J. Ho, and W.-C. Wang, "Design and fabrication of mechanical-resonance-based optical scanner using push-pull actuator," in Health Monitoring of Structural and Biological Systems 2012, 2012, vol. 8348, p. 83480T: International Society for Optics and Photonics.
[55] K. Gu, C. L. Tsui, and W.-C. Wang, "MEMS Based Mechanical Resonant Push-Pull Scanning Endoscope," vol. 45, no. 33, pp. 7-16, 2013.
[56] W.-S. Hua, J. R. Hooks, N. A. Erwin, W.-J. Wu, and W.-C. Wang, "2D metal profile detector using a polymeric fiber optic sensor," in Health Monitoring of Structural and Biological Systems 2012, 2012, vol. 8348, p. 83482K: International Society for Optics and Photonics.
[57] M. K. Thompson and J. M. Thompson, ANSYS mechanical APDL for finite element analysis. Butterworth-Heinemann, 2017.
[58] S.-C. Lin and W.-J. Wu, "Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method," vol. 23, no. 12, p. 125028, 2013.
[59] E. J. Seibel, Q. Y. Smithwick, C. M. Brown, and P. G. Reinhall, "Single-fiber flexible endoscope: general design for small size, high resolution, and wide field of view," in Biomonitoring and Endoscopy Technologies, 2001, vol. 4158, pp. 29-40: International Society for Optics and Photonics.
[60] J. Akedo, S. Nakano, J. Park, S. Baba, and K. Ashida, "The aerosol deposition method," vol. 1, no. 2, pp. 121-130, 2008.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *