帳號:guest(3.133.133.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):紀柏君
作者(外文):Chi, Po-Chun
論文名稱(中文):聲發射監控系統於硬拋光之研究
論文名稱(外文):Development of AE Monitoring System for Hard Polishing Process of Silicon Carbide
指導教授(中文):林士傑
指導教授(外文):Lin, Shih-Chieh
口試委員(中文):宋震國
劉俊葳
口試委員(外文):Sung, Cheng-Kuo
Liu, Chun-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033590
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:91
中文關鍵詞:碳化矽硬拋光聲發射
外文關鍵詞:Silicon carbideHard polishingAcoustic emission
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
碳化矽晶圓因具有優異的耐高電壓、耐熱以及低損耗等材料特性,是高功率電子元件所需關鍵晶圓材料,可應用於製作高階電源供應及控制等綠色電子元件。在環保意識日益高漲之際,能源有效利用率成為關注焦點,碳化矽材料正扮演關鍵角色。然而,碳化矽因其材料特性硬脆,因此表面加工十分困難,現階段加工製程需要通過研磨、硬拋光和化學機械拋光等一系列流程,才能產出合格的碳化矽晶圓。硬拋光作為研磨和化學機械拋光之間的工序,既要去除研磨造成的損傷層,又要保證碳化矽晶圓表面不能產生明顯的損傷層以便於化學機械拋光去除,有著非常重要的承接作用。本文研究將對不同加工參數於碳化矽晶圓硬拋光時表面品質的影響進行分析。此外,本研究將使用聲發射感測器來分析此製程,藉由蒐集不同拋光條件下聲發射訊號值與材料移除率的關聯性,建立碳化矽晶圓於硬拋光製程的移除率預測模型。
Since silicon carbide (SiC) has properties of high voltage withstanding, high hardness, high temperature resistance and so on, it can be widely used in the production of high power devices. However, SiC is very hard to process. It needs a series of steps which includes lapping, hard polishing and chemical mechanical polishing (CMP) to process SiC to insure the quality. Hard polishing is the procedure between lapping and CMP, so it has to remove the damage layer, causing from lapping, and process the SiC wafer to the certain thickness to let CMP process easy to conduct simultaneously. In this paper, it will analyze the effect of different processing factors on the surface quality and removal rate of SiC wafer during hard polishing. Furthermore, this study will use acoustic emission sensor to analyze hard polishing process. By collecting the correlation between acoustic emission signal values and material removal rates under different polishing conditions, trying to establish the removal rate prediction model of SiC wafers in hard polishing process.
摘要 I
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 5
2-1碳化矽晶圓加工方法 5
2-2聲發射感測器的功能及應用 9
第三章 研究目的與方法 19
3-1拋光後晶圓的表面特性要求 19
3-2拋光製程的可控拋光參數 20
3-3實驗規劃與實驗步驟 23
第四章 研究結果與分析 31
4-1拋光參數的影響分析 31
4-1.1拋光參數對聲發射訊號值的影響分析 31
4-1.2拋光參數對材料移除量的影響分析 34
4-1.3拋光參數對表面不均勻度的影響分析 36
4-2預測模型的建立 71
第五章 結論與建議 86
參考文獻 88
[1]張鵬,“碳化矽單晶襯底超精密拋光關鍵技術研究,”博士論文,山東大學,
2017.
[2]https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=13&id=0000459149_hqf2fv7h3cdcfilyidm7c&ct=1&onenewspage=2&page=1
[3]催濤,“單晶矽研磨過程的聲發射在線監控研究,”傳感技術學報, 2016,
vol.29, No.4.
[4]M. Huang et al. “Using Acoustic emission in Fatique and Fracture Materials
research," JOM, 1998, vol.50, No.11.
[5]劉嘉顯,“硬脆材料硬拋光與軟拋光機制分析及最佳製程參數設計:以
99%氧化鋁為例,”碩士論文,國立高雄第一科技大學,1993.
[6]M. Quirk, J. Serda,“Semiconductor Manufactoring Technology ,”
Prentice-Hall, Englewood Cliffs, NJ, 2001.
[7]D. Mba and R.B. Rao, “Research on the Acoustic Emissionin-Process Monitoring of Single-Crystal Silicon Lapping Process,” The Shock and Vibration Digest, 2006, vol.38, pp.3-16.
[8]N. Tandon and A. Choudhury, “A review of vibration and acoustic
measurement methods for the detection of defects in rolling element bearings,” Tribology International 1999, vol.32, pp.469-480.
[9]Al-Ghamd et al, “A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size,” Mechanical Systems and Signal Processing, 2006, vol.20, pp.1537–1571.
[10]P. Nivesrangsan et al, “Source location of acoustic emission in diesel engines,” Mechanical Systems and Signal Processing,2007, vol.21, pp.1103–1114.
[11] J. A. Steel and R. L. Reuben, “Recent developments in monitoring of engines using acoustic emission,” The Journal of Strain Analysis for Engineering Design, 2005, vol.40, pp. 45-57.
[12] A. Albarbar et al, “Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis,” Measurement, 2010, vol.45, pp. 1376-1386.
[13] M. H. El-Ghamry et al, “The development of automated pattern recognition and statistical feature isolation techniques for the diagnosis of reciprocating machinery faults using acoustic emission,” Mechanical Systems and Signal Processing, 2003, vol.17, pp. 805-823.
[14] D.A. KOUROUSSIS et al, “Advances in classification of acoustic emission sources,” Les Journées COFREND, Reims, 2001.
[15] Blahacek et al, “Acoustic Emission Source Location Based on Signal Features,” Adv. Mater. Res.,2006, vol.13–14, pp. 77-82.
[16] G Shen et al, “The Investigation of Artificial Neural Network Pattern Recognition of Acoustic Emission Signals for Pressure Vessel,” Nondestructive Testing, 2001, vol.23, pp.144-149.
[17] G Shen et al, “Acoustic Emission Signal Processing Technique Based on Waveform Analysis,” Nondestructive Testing, 2002, vol.24, pp.257-261.
[18]J.F. Feng et al, “ AE Characteristic Analysis in Aircraft Fatigue Test under Flight Loading Condition,” J. Mechanical Engineering, 2010, vol.46, pp.6-11.
[19]X.J. Wang , “The Real-Time Monitoring for Axle Condition to Horizontal Tails of a Certain Plane using Acoustic Emission Technology,” The 11th National Acoustic Emission Symposium. Hangzhou: The AE Committee of
Chinese Society for NDT, 2006, vol.7, pp. 90- 96.
[20] S. H. Lee and D. Lee, “In-process Monitoring of Drilling Burr Formation Using Acoustic Emission and a Wavelet-based Artificial Neural Network ,” International Journal of Production Research, 2008, vol.46,pp. 4871–4888.
[21] Z. Wang et al, “Neural network detection of grinding burn from acoustic emission,” International Journal of Machine Tools & Manufacture, 2001, vol.41, pp.283-309.
[22] Dotto et al, “Automatic system for thermal damage detection in manufacturing process with Internet monitoring,” Journal of the Brazilian Society of Mechanical Science & Engineering, 2006,vol. 28, pp.153-160.
[23] D. Kouroussis et al, “Unsupervised Pattern Recognition of Acoustic Emission from Full Scale Testing of a Wind Turbine Blade,” Journal of Acoustic Emission(USA),2000, vol.18, pp.217.
[24] K.F. Goebel, P.K. Wright, “Monitoring and diagnosing manufacturing processes using a hybrid architecture with neural networks and fuzzy logic,” Proc. of EUFIT’93, First European Congress on Fuzzy and Intelligent Technologies, 1993, pp. 574-580.
[25] A. Widodo et al.“Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine, ” Expert Syst. Appl.,2009, vol. 36, pp.7252-7261.
[26]D. Dornfeld,“Precision manufacturing,” Springer-Verlag US, 2008, pp. 312-313.
[27]D. Dornfeld,“Advanced Sensor Technologies for CMP, ”UCD Advanced Manufacturing Science Research Centre, 2007.
[28] J. Zhao et al, “Acoustic emission signals classification based on support vector machine, ” in: Computer Engineering and Technology (ICCET), 2010 Proceedings of the 2nd International Conference , 2010, Vol. 6, pp. V6–300.
[29]Q. Ren,“Acoustic emission signal feature analysis using type-2 fuzzy logic system, ” In The 29th North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2010), 2010, pp.1-6.
[30]L. Gao et al,“Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears, ”Sensor, 2011, vol.11, pp. 599 – 611.
[31]A. Hase et al.“Correlation between features of acoustic emission signals and mechanical wear mechanisms,” Wear, 2012, vol.292, pp. 144-150.
[32]楊大勇等人,“加工過程刀具破損監測的聲發射傳感新技術,” 儀器儀錶學報,1999.
[33]S. J. Park et al.“Development of AE Monitoring System for CMP Process, ” Proc. IEEE ICPT, 2007.
[34]M. Helu et al.“In-situ CMP Endpoint Detection Using Acoustic Emission, ” Procedia CIRP, 2014.
[35]D. Dornfeld et al. “In-process detection of micro-scratching during CMP using acoustic emission sensing technology, ” Journal of Electronic Materials, 1998, vol.27, pp. 1099-1103 .
[36]P. Chang et al.“An investigation of the AE signals in the lapping process,” Annals CIRP, 1996, vol.45, pp. 331–334.
[37]P. R. Aguiar et al.“Digital Signal Processing for Acoustic Emission,” licensee InTech , 2012.
[38]W. T. Tseng et al. “Re-examination of Pressure and Speed Dependence of Removal Rate During Chemical-Mechanical Polishing Processes,” J.Eletrochem.Soc., 1997, vol.144, pp.15-17.
[39]C. S. Peirce,“Illustrations of the Logic of Science,” Boston: Harvard University Press, 1932-1958.
[40]葉怡成,“實驗計劃法-製程與產品最佳化,”五南圖書, 2005.
[41]http://nptel.ac.in/courses/116102012/clutches/single%20friction%20disk%20clutch.html
[42] L. M. Cook,“Chemical Processes in Glass Polishing,” J. Non-Chystalline Solids, 1990, vol.120, pp.152-171.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *