帳號:guest(13.59.108.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥伯
作者(外文):Chen, Yen-Po
論文名稱(中文):設計與實現應用於微型發光二極體面板組裝之微型靜電轉移頭陣列
論文名稱(外文):Design and Implementation of Electrostatic Transfer Heads Array for Micro-LED Display Assembly
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):王惠潔
李昇憲
口試委員(外文):Wang, Hui-Chieh
Li, Sheng-Shian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033567
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:139
中文關鍵詞:微機電靜電吸附微型轉移頭陣列微型發光二極體批量轉移
外文關鍵詞:MEMSElectrostaticMicro Transfer Heads ArrayμLEDMass Transfer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:797
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
隨著科技發展,目前薄膜電晶體液晶面板技術已達到成熟量產的階段;然而,隨著可攜式消費性電子的出現,薄膜電晶體液晶面板低操作視角、殘影、及高功耗等缺點已逐漸不符合需求。而微型發光二極體面板技術的廣角、高反應速度、及低功率等優勢,使此技術成為未來的發展趨勢。由於微型發光二極體面板的操作概念為將不同來源的紅綠藍單色微型發光二極體陣列分次批量組裝於電晶體上,因此組裝上需要批量化、高對準精度、及選擇性的轉移技術,才能縮短組裝時間降低成本使其量產。
評估微型發光二極體面板的組裝需求,本研究利用微機電技術開發微型靜電式轉移頭陣列元件達到批量轉移的功能。此元件具有易陣列化及高精度的優點,並且透過電路控制靜電吸附,達到能在陣列中選擇性去除低良率晶片提升轉移效率。所設計之微型靜電式轉移取頭陣列元件具有靜電電極佈局、有效接觸凸塊、及緩衝彈簧等結構。操作上透過凸塊提供有效晶片接觸,利用電極設計提供足夠靜電力,以彈簧提供接觸操作之緩衝,並將此操作元件陣列化以達到微型發光二極體晶片之批量轉移。
Nowadays, Thin film transistor liquid crystal display (TFT-LCD) has achieved the stage of mass production; however, with the disadvantage of low viewing angle, image sticking, and high power consumption, it cannot satisfy the demands of consumer electronics. On the other hand, with the advantage of high viewing angle, low responding time, and low power consumption, Micro Light Emitting Diode Display (μLED Display) technology becomes the development trend of displays. A μLED Display contains single red, green, and blue self color emitting elements forming a single pixel element, which requires mass productive, high-precision, and selective Transfer technology for assembly to lower the cost.
This research use MEMS technology to develop a Micro Electrostatic Transfer Heads Array to achieve mass production of μLED Display. With the help of MEMS technology’s batch process and high precision, a Transfer Heads Array is able to mass transfer selectively with electrode design, mesa structure, spring structure, precision stage and circuit control to increase the assembly efficiency of μLED Display.
摘要 I
Abstract II
致謝 III
目錄 VI
圖目錄 X
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 6
1-2-1 轉移流程探討 6
1-2-2 轉移機制 8
1-2-3 靜電吸盤及轉移頭探討 12
1-3 研究動機與目標 14
第二章 設計與分析 28
2-1 轉移系統及流程 28
2-2 元件結構概念 30
2-3 靜電電極 31
2-3-1 靜電力原理 32
2-3-2 初步電極設計 34
2-3-3 靜電力模擬 36
2-4 彈簧結構 38
2-4-1 吸收接觸表面起伏 39
2-4-2 提供足夠反力 39
2-5 凸塊結構 39
2-6 元件設計 41
2-6-1 微型靜電式轉移頭元件 42
2-6-2 電極佈局測試元件 44
2-6-3 陣列化測試元件 45
第三章 製程流程與結果 61
3-1 光罩設計 61
3-1-1 對準圖形 61
3-1-2 微型靜電式轉移頭元件 62
3-1-3 陣列化測試元件 63
3-1-4 陣列化晶片元件 64
3-1-5 電極佈局測試元件 64
3-1-6 溼蝕刻測試結構 65
3-2 製程流程 65
3-3 製程結果討論 68
3-3-1 微型靜電式轉移頭元件及陣列化測試元件 69
3-3-2 電極佈局測試元件 70
3-4 結論 71
第四章 量測架設及結果 86
4-1 電極佈局測試元件 86
4-1-1 晶片吸取實驗 86
4-1-2 電子秤靜電力量測 90
4-1-3 結果討論 94
4-2 微型靜電式轉移頭元件 94
4-2-1 彈簧特性量測 95
4-2-2 結果討論 96
4-3 陣列化測試元件 97
4-3-1 電子秤量測 97
4-3-2 結果討論 98
第五章 結論及未來工作 117
5-1 結論 117
5-2 未來工作 118
參考資料 123
附錄 127
附錄A 晶片吸取架設及量測 127
A-1 晶片吸取系統 127
A-2量測架設及流程 129
A-3 結果討論 130
[1] http://www.maxi-pedia.com/tft+lcd+display+monitor+panel
[2] C.-C. Chen, C.-Y. Wu, and T.-F. Wu, “LED back-light driving system for LCD panels,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, March, 2006, pp 381-385.
[3] http://technews.tw/2016/09/22/micro-led-ledinside-forum-2016
[4] A. Bibl, J.A. Higginson, H. -f. S. Law, H. -H. Hu, U.S. Patent NO.20130126827 A1, 2013.
[5] S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H.X. Jiang, “GaN microdisk light emitting diodes,” Applied Physics Letters, VOL. 76, pp 631-633, 2000
[6] H.X. Jiang, S.X. Jin, J. Lin, and J. Sakya, and J. Y. Lin, “III-nitride blue microdisplay,” Applied Physics Letters, VOL 78, pp 1303-1305, 2001.
[7] S.-I. Park, Y. Xiong, R.H. Kim, P. Elvikis, M. Meitl, D.H. Kom, J. Wu, J. Yoon, C.-J. Yu, Z. Liu, Y. Huang, K.-C. Hwang, P. Ferreira, X. Li, K. Choquette, and J.A. Rogers,“Printed assemblies of inorganic light-emitting diode for deformable and semitransparent displays,” Science, VOL 35, pp 977-981, 2009.
[8] http://www.sony.net/SonyInfo/News/Press/201201/12-005E/
[9] http://www.ledinside.com.tw/research/20160804-32880.html
[10] https://www.slideshare.net/Yole_Developpement/yole-mems-formobilejune2013reportsample
[11] C.-H. Chu1, W.-P. Shih, S.-Y. Chung, H.-C. Tsai, T.-K. Shing and P.-Z. Chang, “A low actuation voltage electrostatic actuator for RF MEMS switch applications,” Journal of Micromechanics and Microengineering, VOL 7, pp 1649-1656, 2007.
[12] A. Muller, J. Gottert and J. Mohr,“LIGA microstructures on top of micromachined silicon wafers used to fabricate a micro-optical switch,” Journal of Micromechanics and Microengineering, VOL 3, pp 158-160, 1993.
[13] J. Singh, J.H.S. Teo, Y. Xu, C.S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” Journal of Micromechanics and Microengineering, VOL 18, 2008.
[14] http://www.ti.com.tw/articles/detail.asp?sno=18
[15] S. Eminoglu, M. Y. Tanrikulu, and T. Akin, “A Low-Cost 128 × 128 Uncooled Infrared Detector Array in CMOS Process,” Journal of Microelectromechanical Systems, VOL 17, NO. 1, pp 1057-7157, 2008.
[16] D. L. Goodman, “Effect of wafer bow on electrostatic chucking and back side gas cooling,” Journal of Applied Physics, 104, 124902, 2008.
[17] Y.-C. Wu, “Development of Micro Pick-up Array for Micro LED Assembly,” NTHU, MS, Thesis, 2016.
[18] P. Kim, Y.-D. Ha, H. Park, and J.-H. Park, “development of die-bonder with multi & matrix picker and placer to increase production capacity,” Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, October, 2012.
[19] A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, and J.A. Rogers, “transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Advanced materials, VOL 24, pp 5284-5318, 2012.
[20] M.-H. Wu, Y.-H. Fang, C.-H. Chao, “Electric-programmable magnetic module,” U.S. Patent NO. 0148650 A1, 2017.
[21] M.-H. Wu, Y.-H. Fang, C.-H. Chao, “Electric-programmable magnetic module and picking-up and placement process for electronic devices,” U.S. Patent NO. 9607907 B2, 2017.
[22] A. Bibl, J.A. Higginson, H.-f S. Law and H.-H. Hu, “Micro device transfer head heater assembly and method of transferring a micro device ,” U.S. Patent NO.8789573 B2, 2014.
[23] D. Golda, A. Bibl, “Compliant bipolar micro device transfer head with silicon electrodes,” U.S. Patent NO. 8415767 B1, 2013.
[24] A. Bibl, D. Golda, “Compliant micro device transfer head with integrated electrode leads,” U.S. Patent NO. 8791530 B2, 2014.
[25] J. ‐F. Daviet, L. Peccoud, and F. Mondon, “Electrostatic Clamping Applied to Semiconductor Plasma Processing: I. Theoretical Modeling,” J. Electrochem. Soc., 1993 VOL 140, issue 11, pp 3245-3256, 1993
[26] D. Ruffatto, J. Shah and M. Spenko, "Optimization and experimental validation of electrostatic adhesive geometry," IEEE Aerospace Conference, Big Sky, MT, pp. 1-8, 2013
[27] T. Fukushima, H. Hashiguchi, J. Bea1, M. Murugesan, K.-W. Lee, T. Tanaka, and M. Koyanagi, “3D Integration Technologies Using Self-Assembly and Electrostatic Temporary Multichip Bonding,” IEEE Electronic Components & Technology Conference, Las Vegas, US, May, 2013.
[28] C. Landesberger, R. Wieland, A. Klumpp, P. Ramm, A. Drost, U. Schaber, D. Bonfert, and K. Bock,“Electrostatic wafer handling for thin wafer processing,” IEEE The European Microelectronics and Packaging Conference & Exhibition, Rimini, Italy, 2009.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *