帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張家杰
作者(外文):Chang, Chia-Chieh
論文名稱(中文):新型韋根傳感器獵能裝置應用於線性位置量測系統開發研究
論文名稱(外文):Novel Wiegand Effect-based Energy Harvesting Device for Linear Positioning Measurement System
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):宋震國
曹哲之
徐志豪
口試委員(外文):Sung, Cheng-Kuo
Tsao, Che-Chih
Zhi, Hao-Xu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033561
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:108
中文關鍵詞:韋根傳感器獵能自供電
外文關鍵詞:Wiegand transducerEnergy harvestingSelf-propelled
相關次數:
  • 推薦推薦:0
  • 點閱點閱:574
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
韋根傳感器為自驅動傳感器之一種,其於受到磁場方向改變360度時會輸出一對脈衝訊號,其訊號之峰值不受磁極改變之頻率影響。韋根傳感器有多項值得注意之優點使其相當適合工業上之應用,其為自驅動原件,不需另外供電、磁場極性變化一周,即輸出一對正負脈衝訊號。而輸出訊號之峰值和磁場之變化速度無關,可於極低速度變化下運作,亦有非接觸傳感、無可動元件,使用壽命極長等特性。
著眼於上述之優點,本研究進行韋根傳感器之特性探討,並希望借由獵能系統,尤其為應用韋根傳感器之獵能系統其無線傳感及可進行能量收集之特性,將其應用並整合於線性磁性位置量測系統中,目的為改善現有位置量測系統需依賴電池之模式。並且透過磁場之設計達成不需依賴特殊外加場強元件即可應用於線性磁性位置量測系統之中之韋根傳感器獵能裝置。
本研究使用實驗分析韋根傳感器其輸出之訊號與所受外部磁場以及磁場變換頻率之關係與各項訊號特性。基此基礎特性之探討,進而能夠得出韋根傳感器之最佳操作條件。而透過有限單元軟體輔助設計並分析獵能模組之讀頭設計可以掌握讀頭導磁設計之幾何對於其內部韋根傳感器之受磁磁場之影響,進而得出較佳之設計幾何。最後實際加工並進行為根傳感器獵能裝置之組裝測試,驗證於模擬中所設計之磁場。於輸出性能量測之實驗中,本研究探討了獵能裝置於操作中之各項運動參數對於輸出訊號之影響,包含間隙高度、速度、負載阻抗等參數均為探討之主軸。
Wiegand transducer is classified as a pulse generator to be used in gas meters and card readers applications. Due to the growing research field of micro-generators and energy harvesters, Wiegand transducer is also considered as the possible energy source for self-propelled devices. With the self-propelled and speed independent properties of Wiegand transducer, it is suitable for applications in the mechanical and automation industry.
The purpose of this study is focused on the application of Wiegand transducer in energy harvesting system and integrated it into linear position measurement system. In this study, Wiegand transducer energy harvesting device is integrated with the linear motion measurement system to obtain longer lifespan of the linear position measurement system and in order to replace the battery with the energy harvesting device. The basic magnetic properties of Wiegand transducer is investigated to understand its operation limit.
Finite element method is used to assist in designing and analyzing the read head for the energy harvesting module. Therefore, better design geometry can be obtained via understanding the influence of the magnetic guide design geometry in the read head of the Wiegand transducer on magnetic field. To understand the output performance of energy harvesting device, experimental approach is applied. Based on the experiment result, the influence of parameters such as geometry, speed and gap size has been studied in order to investigate the effect of parameters to the output signal.
摘要 I
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 文獻回顧 7
1.4 研究方法 14
第二章 理論背景 16
2.1 韋根傳感器之基礎理論與工程應用 16
2.1.1 韋根效應 16
2.1.2 韋根傳感器之材料與結構組成 17
2.1.3 韋根感測絲之磁特性 18
2.1.4 韋根傳感器之訊號與操作特性 20
2.2 磁路設計與電磁學理論介紹 21
2.2.1 磁通量與高斯定律 21
2.2.2 B場與H場之關係 21
2.2.3 冷次定律 24
2.2.4 磁路分析 25
第三章 實驗設計與磁場模擬 28
3.1 韋根傳感器基礎特性測試 28
3.1.1 組件選擇 28
3.1.2 實驗平台設計 33
3.1.3 不同場強下測試實驗 35
3.1.4 不同轉速下測試實驗 38
3.1.5 峰值電壓分佈分析實驗 42
3.1.6 傳感器最佳輸出效能評估 44
3.2 磁路模擬輔助讀頭模組設計 47
3.2.1 磁性尺獵能裝置讀頭設計概念 47
3.2.2 模擬方法 48
3.2.3 讀頭模組於運動中之磁場變化 53
3.2.4 讀頭模組設計案例討論 62
3.3 讀頭模組場強量測與模擬結果驗證 72
3.3.1 讀頭模組製作 72
3.3.2 磁場強度量測實驗架設與實驗步驟 73
3.3.3 運動中之磁場變化實驗結果與模擬比較 75
3.3.4 磁場強度量測實驗結果與模擬磁場強度比較 80
第四章 量測平台架設與輸出性能測試 85
4.1 測試平台設計與實驗流程 85
4.1.1 實驗平台架設 85
4.1.2 實驗流程 88
4.2 輸出性能測試實驗結果 90
4.2.1 最大瞬時功率量測 90
4.2.2 脈波能量量測 94
第五章 結論與未來展望 99
5.1 結論 99
5.1.1 韋根傳感器基礎特性測試 99
5.1.2 磁路模擬輔助讀頭模組設計 100
5.1.3 讀頭模組場強量測 101
5.1.4 輸出性能測試 101
5.2 本文貢獻 103
5.3 未來研究方向 104
參考文獻 105

[1] "https://www.posital.com/en/products/kit-encoders/kit-encoders.php," Posital Fraba. [Online].
[2] "http://www.tami.org.tw/news_week1.htm," [Online].
[3] "https://ifr.org/ifr-press-releases/news/ifr-forecast-1.7-million-new-robots-to-transform-the-worlds-factories-by-20," [Online].
[4] J. R. Wiegand, "Bistable magnetic device". U.S. Patent #3,820,090, 1974.
[5] J. R. Wiegand, "Method of manufacturing bistable magnetic device". U.S. Patent #3,892,118, 1974.
[6] P. E. Wigen, "Wiegand wire: new material for magnetic based devices," Electronics, no. 48, pp. 100-105, 1975.
[7] "https://en.wikipedia.org/wiki/Vicalloy," [Online].
[8] J. D. Marks, "Materials considerations in Wiegand effect devices," in 8th Automotive Materials Conference, 1979.
[9] M. Vázquez, C. Gómez-Polo, D.-X. Chen and A. Hernando, "Magnetic Bistability of Amorphous Wires and Sensor Applications," IEEE Trans. Magn, vol. 30, no. 2, 1994.
[10] K. Mohri, F.R Humphrey K. Kawashimay K. Kimura and M. Mizutani, "LARGE BARKHAUSEN AND MATTEUCCI EFFECTS IN FeCoSiB, FeCrSiB, AND FeNiSiB AMORPHOUS WIRES," IEEE Trans. Magn, vol. 26, no. 5, pp. 1789-1791, 1990.
[11] S. Abe and A. Matsushita, "Construction of Electromagnetic Rotation Sensor Using Compound Magnetic Wire," IEEE Trans.Magn, vol. 30, no. 6, pp. 4635-4637, 1994.
[12] S. Abe and A. Matsushita, "Induced Pulse Voltage in Twisted Vicalloy Wire with Compound Magnetic Effect," IEEE Trans.Magn, vol. 31, no. 6, pp. 3152-3154, 1995.
[13] S. Abe, A. Matsushita and M. Naoe, "Induced Pulse of Compound Magnetic Wires by the Large Barkhausen Jump," Magn. Soc. Jpn., vol. 21, no. 2, pp. 495-498, 1997.
[14] S. Abe and A. Matsushita, "DEPENDENCE OF LARGE BARKHAUSEN JUMP ON LENGTH OF A VICALLOY FINE WlRE WITH TORSION STRESS," IEEE Trans.Magn, vol. 34, no. 4, pp. 1318-1320, 1998.
[15] J. D. Marks and M.J. Sinko, "The Wiegand effect and its automotive applications," in Soc. Automot. Engr 780208, 1978.
[16] H. Zangl, B. Brandstätter, S. P. Cermak, G. Brasseur, "Simulation and Robustness Analysis for a Novel Capacitive/Magnetic Full-Turn Absolute Angular Position Sensor," IEEE Trans.Magn, vol. 54, no. 1, pp. 436-441, 2005.
[17] A. Matsushita, and Y. Takemura, "Power generating device using compound magnetic wire," Journal of Applied Physics, vol. 87, no. 9, pp. 6307-6309, 2000.
[18] R. Serizawa, T. Yamada, S. Masuda, S. Abe,, "Energy harvesting derived from magnetization reversal in FeCoV Wire," IEEE Sensors, 2012.
[19] F. Ongaro, S. Saggini,and L. Corradini, "Low-Power Energy Harvester for Wirgand Transducers," Proc. 28th IEEE Appl. Power Electron. Conf. Expo. (APEC), pp. 453-459, 2013.
[20] R. Zentgraf and U. Bochtler, “Use Case Analysis of Wiegand-based Energy Harvester in Mechanical Sensing Devices,” PIERS Progress in Electromagnetics Research Symposium, pp. 1580-1582, 2015.
[21] R. Zentgraf, D. Hennig, “Evaluation of Self-Sufficient Zero Speed Sensors based on Large Barkhausen Jumps,” Prague, 2016.
[22] A. Takebuchi, T. Yamada, and Y. Takemura, "Reduction of vibration amplitude in vibration-type electricity generator using magnetic wire," Magn. Soc. Jpn., vol. 41, pp. 34-40, 2017.
[23] Y. Takemura, N. Fujinaga, A. Takebuchi, and T. Yamada, "Battery-less Hall sensor operated by energy harvesting from a single Wiegand pulse," IEEE Trans.Magn, 2017.
[24] "https://www.ichaus.de/product/iC-PM," iC-Haus. [Online].
[25] "http://ahest.com/products.asp," [Online].
[26] "https://en.wikipedia.org/wiki/Wiegand_effect," [Online].
[27] "https://en.wikipedia.org/wiki/Barkhausen_effect," [Online].
[28] "http://www.machinedesign.com/engineering-essentials/brushing-wiegand-man-effect-and-wire-changed-engineering," [Online].
[29] "https://en.wikipedia.org/wiki/Magnetic_hysteresis," [Online].
[30] "https://www.britannica.com/science/Lenzs-law," [Online].
[31] "http://info.ee.surrey.ac.uk/Workshop/advice/coils/gap/index.html," [Online].
[32] "https://www.khanacademy.org/science/physics/circuits-topic/circuits-resistance/a/ee-kirchhoffs-laws," [Online].
[33] "https://www.posital.com/en/products/kit-encoders/wiegand-sensors.php," [Online].
[34] "https://www.werap.ch/en/winding/products/wiegand-sensor.html," [Online].
[35] "http://www.nikkoshi.co.jp/products/pps_pro.html," [Online].
[36] Nanjing AH Electronic Sci & Tech Co., Ltd., "Manufacturer’s Specification of WG Series Wiegand Sensors and Wiegand Modules".
[37] 東方馬達, "https://www.orientalmotor.com.tw/," [Online].
[38] R. Malmhall, K. Mohri, F. B. Humphrey, T. Manabe, H. Kawamura, J. Yamasaki and I. Ogasawara, "Bistable magnetization reversal in 50 μm diameter annealed cold drawn amorphous wires," IEEE Trans. Magn., vol. 23, no. 5, pp. 3242 - 3244, 1987.
[39] J. R. Wiegand., "Switchable magnetic device". U.S. Patent #4,247,601, 1981.
[40] S. Saggini, F. Ongaro, L. Corradini, and A. Affanni, "Low-Power Energy Harvesting Solutions for Wiegand Transducers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 3, pp. 766-779, 2015.
[41] "http://www.ni.com/zh-tw/shop/select/myrio-student-embedded-device," [Online].
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *